This is a two-part paper, which proposes a new theory explaining the experimentally observed enhancement of the thermal conductivity, knf, of nanofluids (Part I) and discusses simulation results of nanofluid flow in a radial parallel-plate channel using different knf-models (Part II). Specifically, Part I provides the derivation of the new model as well as comparisons with benchmark experimental data sets and other theories, focusing mainly on aluminum and copper oxide nanoparticles in water. The new thermal conductivity expression consists of a base-fluid static part, kbf, and a new “micromixing” part, kmm, i.e., knf = kbf + kmm. While kbf relies on Maxwell’s theory, kmm encapsulates nanoparticle characteristics and liquid properties as well as Brownian-motion induced nanoparticle fluctuations, nanoparticle volume fractions, mixture-temperature changes, particle–particle interactions, and random temperature fluctuations causing liquid-particle interactions. Thus, fundamental physics principles include the Brownian-motion effect, an extended Langevin equation with scaled interaction forces, and a turbulence-inspired heat transfer equation. The new model predicts experimental data for several types of metal-oxide nanoparticles (20 < dp < 50 nm) in water with volume fractions up to 5% and mixture temperatures below 350 K. While the three competitive theories considered match selectively experimental data, their needs for curve-fitted functions and arbitrary parameters make these models not generally applicable. The new theory can be readily extended to accommodate other types of nanoparticle-liquid pairings and to include nonspherical nanomaterial.

References

1.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
,and
Pradeep
,
T.
, 2008,
Nanofluids: Science and Technology
,
John Wiley & Sons
,
New York
.
2.
Tillman
,
P.
, and
Hill.
J. M.
, 2007, “
Determination of Nanolayer Thickness for a Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
34
(
4
), pp.
399
407
.
3.
Li
,
C. H.
,and
Peterson
,
G. P.
, 2007, “
Mixing Effect on the Enhancement of the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4668
4677
.
4.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
,and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Seized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
, pp.
855
863
.
5.
Koo
,
J.
,and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.
6.
Kleinstreuer
,
C.
,and
Li
,
J.
, 2008, “
Discussion: Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
130
, p.
025501
.
7.
Gupte
,
S. K.
,and
Advani
,
S. G.
, 1995, “
Role of Micro-Convection Due to Non-Affine Motion of Particles in a Mono-Disperse Suspension
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2945
2958
.
8.
Leal
,
L. G.
, 1973, “
On the Effective Conductivity of a Dilute Suspension of Spherical Drops in the Limit of Low Particle Peclet Number
,”
Chem. Eng. Commun.
,
1
, pp.
21
31
.
9.
Gupte
,
S. K.
,
Advani
,
S. G.
,and
Hu
,
P.
, 1993, “
A Cell Model to Investigate the Influence of Fall Velocity Distribution on Transport Processes in a Sedimenting Suspension
,”
64th Annual Society of Rheology Meeting
,
Santa Barbara
,
CA
.
10.
Wang
,
X. W.
,
Xu
,
X. F.
,and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.
11.
Prasher
,
R.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
588
595
.
12.
Bao
,
Y.
, 2009, “
Thermal Conductivity Equations Based on Brownian Motion in Suspensions of Nanoparticles (Nanofluids)
,”
ASME J. Heat Transfer
,
130
, p.
042408
.
13.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
Berlin, Germany
.
14.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3707
.
15.
Panton
,
R. L.
, 2005,
Incompressible Flow
, 3rd ed.,
John Wiley & Sons
,
New York
.
16.
Koo
,
J. M.
, 2005, “
Computational Nanofluid Flow and Heat Transfer Analyses Applied to Micro-Systems
,” Ph.D. Dissertation, NC State University, Raleigh, NC.
17.
Einstein
,
A.
, 1956,
Investigations on the Theory of the Brownian Movement
,
Dover Publications, Inc.
,
New York
.
18.
Israelachvili
,
J. N.
, 1985,
Intermolecular and Surface Forces With Applications to Colloidal and Biological Systems
,
Academic Press, Inc.
,
Orlando, FL
.
19.
Wang
,
X. W.
, and
Xu
,
X. F.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.
20.
Feng
,
Y.
,and
Lin
,
J. Z.
, 2008, “
The Collision Efficiency of Spherical Dioctyl Phthalate Aerosol Particles in the Brownian Coagulation
,”
Chin. Phys. B
,
17
(
12
), pp.
4547
4553
.
21.
Ratnesh
,
K. S.
, 2008, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
130
, p.
042406
.
22.
Karniadakis
,
G. E.
, 2002,
Micro Flows Fundamentals and Simulation
,
Springer-Verlag
,
New York
.
23.
Benaroya
,
H.
, 1998,
Mechanical Vibration: Analysis, Uncertainties, and Control
,
Simon & Schuster/Viacom Company
,
Upper Saddle River, NJ
.
24.
Li
,
J.
, 2008, “
Computational Analysis of Nanofluid Flow in Microchannels With Applications to Micro-Heat Sinks and Bio-MEMS
,” Ph.D. dissertation, North Carolina State University, Raleigh, NC.
25.
Maxwell
,
J. C.
, 1891,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Clarendon Press
,
Oxford, UK
.
26.
Hamilton
,
R. L.
,and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
, pp.
187
191
.
27.
Xuan
,
Y.
,and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Mass Transfer
,
21
, pp.
58
64
.
28.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,and
Liu
,
Y.
, 2002, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
,
23
(
2
), pp.
571
580
.
29.
Das
,
S. K.
,
Putra
,
N.
,
Theisen
,
P.
,and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.
30.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
,and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
, p.
153107
.
31.
Zhang
,
X.
,
Gu
,
H.
,and
Fujii
,
M.
, 2006, “
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluid
,”
AIAA J.
,
41
, pp.
831
840
.
32.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
,and
Doucet
,
D.
, 2009, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
, pp.
363
371
.
33.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
,and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Nanophase and Nanocomposite Materials II
,
S.
Komarneni
,
J. C.
Parker
, and
H. J.
Wollenberger
, eds.,
MRS
,
Pittsburg, PA
, pp.
3
11
.
34.
Hunter
,
R. J.
, 1991,
Foundations of Colloid Science
, Vol.
I
,
Oxford University Press Inc.
,
New York
.
You do not currently have access to this content.