To simulate the heat transfer performance of devices incorporating high-conductivity porous materials, it is necessary to determine the relevant effective properties to close the volume-averaged momentum and energy equations. In this work, we determine these effective properties by conducting direct simulations in an idealized spherical void phase geometry and use the results to establish closure relations to be employed in a volume-averaged framework. To close the volume-averaged momentum equation, we determine the permeability as defined by Darcy’s law as well as a non-Darcy term, which characterizes the departure from Darcy’s law at higher Reynolds numbers. Results indicate that the non-Darcy term is nonlinearly related to Reynolds number, not only confirming previous evidence regarding such behavior in the weak inertia flow regime, but demonstrating that this is generally true at higher Reynolds numbers as well. The volume-averaged energy equation in the fluid phase is closed by the thermal dispersion conductivity tensor, the convecting velocity, and the interfacial Nusselt number. Overall, it has been found that many existing correlations for the effective thermal properties of graphite foams are oversimplified. In particular, it has been found that the dispersion conductivity is not well characterized using the Péclet number alone, rather the Reynolds and Prandtl numbers must be considered as separate influences. Additionally, the convecting velocity modification, which is not typically considered, was found to be significant, while the interfacial Nusselt number was found to exhibit a nonzero asymptote at low Péclet numbers. Finally, simulations using the closed volume-averaged equations reveal significant differences in heat transfer when employing the present dispersion model in comparison to a simpler dispersion model commonly used for metallic foams, particularly at high Péclet numbers and for thicker foam blocks.

References

1.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
, 2002, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
J. Electron Packag.
,
124
, pp.
155
163
.
2.
Gallego
,
N. C.
, and
Klett
,
J. W.
, 2003, “
Carbon Foams for Thermal Management
,”
Carbon
,
41
, pp.
1461
1466
.
3.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
, pp.
1161
1176
.
4.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Thompson
,
B.
, and
Hangan
,
H.
, 2006, “
Thermal Characterization of Porous Carbon Foam—Convection in Parallel Flow
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1991
1998
.
5.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Yu
,
Q.
,
Betchen
,
L. J.
, and
Thompson
,
B.
, 2007, “
Forced Convection and Hydraulic Losses in Graphitic Foam
,”
ASME Trans. J. Heat Transfer
,
129
, pp.
1237
1245
.
6.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Yu
,
Q.
, and
Thompson
,
B. E.
, 2007, “
Characterization of Porous Carbon Foam as a Material for Compact Recuperators
,”
Trans. ASME: J. Eng. Gas Turbines Power
,
129
, pp.
326
330
.
7.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
, 2009, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
J. Electron. Packag.
,
131
, pp.
1
10
.
8.
Sultan
,
K.
,
DeGroot
,
C. T.
,
Straatman
,
A. G.
,
Gallego
,
N.
, and
Hangan
,
H.
, 2009, “
Thermal Characterization of Porous Graphitic Foam—Convection in Impinging Flow
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4296
4301
.
9.
Leong
,
K. C.
,
Li
,
H. Y.
,
Jin
,
L. W.
, and
Chai
,
J. C.
, 2010, “
Numerical and Experimental Study of Forced Convection in Graphite Foams of Different Configurations
,”
Appl. Therm. Eng.
,
30
, pp.
520
532
.
10.
Whitaker
,
S.
, 1967, “
Diffusion and Dispersion in Porous Media
,”
AIChE J.
,
13
, pp.
420
427
.
11.
Costa
,
V. A. F.
,
Oliveira
,
L. A.
,
Baliga
,
B. R.
, and
Sousa
,
A. C. M.
, 2004,
“Simulation of Coupled Flows in Adjacent Porous and Open Domains Using a Control-Volume Finite-Element Method,”
Numer. Heat Tranfer, Part A
,
45
, pp.
675
697
.
12.
Betchen
,
L. J.
,
Straatman
,
A. G.
, and
Thompson
,
B. E.
, 2006,
“A Nonequilibrium Finite-Volume Model for Conjugate Fluid/Porous/Solid Domains,”
Numer. Heat Tranfer, Part A
,
49
, pp.
543
565
.
13.
DeGroot
,
C. T.
, and
Straatman
,
A. G.
, 2011, “
A Finite-Volume Model for Fluid Flow and Non-Equilibrium Heat Transfer in Conjugate Fluid-Porous Domains Using General Unstructured Grids
,”
Numer. Heat Tranfer B
,
60
, pp.
252
277
.
14.
Yu
,
Q.
,
Thompson
,
B. E.
, and
Straatman
,
A. G.
, 2006, “
A Unit Cube-Based Model for Heat Transfer and Fluid Flow in Porous Carbon Foam
,”
ASME Trans. J. Heat Transfer
,
128
, pp.
352
360
.
15.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME Trans. J. Heat Transfer
,
122
, pp.
557
565
.
16.
Karimian
,
S. A. M.
, and
Straatman
,
A. G.
, 2009, “
Numerical Modeling of Multidirectional Flow and Heat Transfer in Graphitic Foams
,”
ASME Trans. J. Heat Transfer
,
131
(
5
), p.
052602
.
17.
DeGroot
,
C. T.
, and
Straatman
,
A. G.
, 2011,
“Closure of Non-Equilibrium Volume-Averaged Energy Equations in High-Conductivity Porous Media,”
Int. J. Heat Mass Transfer
,
54
, pp.
5039
5048
.
18.
Whitaker
,
S.
, 1996, “
The Forchheimer Equation: A Theoretical Development
,”
Transp. Porous Media
,
25
, pp.
27
61
.
19.
Mei
,
C. C.
, and
Auriault
,
J. L.
, 1991, “
The Effect of Weak Inertia on Flow Through a Porous Medium
,”
J. Fluid Mech.
,
222
, pp.
647
663
.
20.
Firdaouss
,
M.
,
Guermond
,
J. L.
, and
LeQuéré
,
P.
, 1997, “
Nonlinear Corrections to Darcy’s Law at Low Reynolds Numbers
,”
J. Fluid Mech.
,
343
, pp.
331
350
.
21.
Rojas
,
S.
, and
Koplik
,
J.
, 1998, “
Nonlinear Flow in Porous Media
,”
Phys. Rev. E
,
58
(
4
), pp.
4776
4782
.
22.
Slattery
,
J. C.
, 1967, “
Flow of Viscoelastic Fluids Through Porous Media
,”
AIChE J.
,
13
, pp.
1066
1071
.
23.
Gray
,
W. G.
, 1975, “
A Derivation of the Equations for Multi-Phase Transport
,”
Chem. Eng. Sci.
,
30
(
1
), pp.
229
233
.
24.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer-Verlag
,
New York
.
25.
Whitaker
,
S.
, 1997,
Fluid Transport in Porous Media
,
Springer-Verlag
,
Southampton, United Kingdom
, Chap. I, pp.
1
59
.
26.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
, pp.
195
203
.
27.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Kodama
,
Y.
, 2006, “
An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium
,”
J. Fluid Mech.
,
563
, pp.
81
96
.
28.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME Trans. J. Heat Transfer
,
128
, pp.
793
799
.
29.
Karimian
,
S. A. M.
, and
Straatman
,
A. G.
, 2008, “
CFD Study of the Hydraulic and Thermal Behavior of Spherical-Void-Phase Porous Materials
,”
Int. J. Heat Fluid Flow
,
29
, pp.
292
305
.
30.
Taylor
,
G.
, 1953, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. London, Ser. A
,
219
, pp.
186
203
.
31.
Yagi
,
S.
,
Kunii
,
D.
, and
Wakao
,
N.
, 1960, “
Studies on Axial Effective Thermal Conductivities in Packed Beds
,”
AIChE J.
,
6
, pp.
543
546
.
32.
Eidsath
,
A.
,
Carbonell
,
R. G.
,
Whitaker
,
S.
, and
Herrmann
,
L. R.
, 1983, “
Dispersion in Pulsed Systems—III Comparison Between Theory and Experiments for Packed Beds
,”
Chem. Eng. Sci.
,
38
, pp.
1803
1816
.
33.
Kuwahara
,
F.
,
Nakayama
,
A.
, and
Koyama
,
H.
, 1996, “
A Numerical Study of Thermal Dispersion in Porous Media
,”
ASME Trans. J. Heat Transfer
,
118
, pp.
756
761
.
34.
Kuwahara
,
F.
, and
Nakayama
,
A.
, 1999, “
Numerical Determination of Thermal Dispersion Coefficients Using a Periodic Porous Structure
,”
ASME Trans. J. Heat Transfer
,
121
, pp.
160
163
.
You do not currently have access to this content.