As the scale of devices becomes small, thermal control and heat dissipation from these devices can be effectively accomplished through the implementation of microchannel passages. The small passages provide a high surface area to volume ratio that enables higher heat transfer rates. High performance microchannel heat exchangers are also attractive in applications where space and/or weight constraints dictate the size of a heat exchanger or where performance enhancement is desired. This survey article provides a historical perspective of the progress made in understanding the underlying mechanisms in single-phase liquid flow and two-phase flow boiling processes and their use in high heat flux removal applications. Future research directions for (i) further enhancing the single-phase heat transfer performance and (ii) enabling practical implementation of flow boiling in microchannel heat exchangers are outlined.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
,
ELD-2
(
5
), pp.
126
129
.
2.
Goodling
,
J. S.
, 1993,
“Microchannel Heat Exchangers: A Review
,”
Proc. High Heat Flux Engineering II
, July 12–13, 1993,
San Diego
,
CA
, 1997, pp.
66
82
.
3.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
, 2000, “
Fluid Flow and Heat Transfer at Micro and Meso Scales With Application to Heat Exchanger Design.
,”
Appl. Mech. Rev.
,
53
(
7
), pp.
175
193
.
4.
Palm
,
B.
, 2001, “
Heat Transfer in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
3
), pp.
155
175
.
5.
Kandlikar
,
S. G.
, 2001, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators
,”
Compact Heat Exchangers and Enhancement Technology for the Process Industries
, pp.
319
334
.
6.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
7.
Kandlikar
,
S. G.
, 2002, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators
,”
Heat Transfer Eng.
,
23
(
1
), pp.
5
23
.
8.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
9.
Watel
,
B.
, 2003, “
Review of Standard Flow Boiling in Small Passages of Compact Heat-Exchangers
,”
Int. J. Therm. Sci.
,
42
(
2
), pp.
107
140
.
10.
Bergles
,
A. E.
,
Lienhard
,
J. H. V.
,
Kendall
,
G. E.
, and
Griffith
,
P.
, 2003, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
,
24
(
1
), pp.
18
40
.
11.
Thome
,
J. R.
, 2004, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
12.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
13.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
, 2004, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
183
205
.
14.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
, 2005, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
15.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
, 2005, “
Cooling of Photo Voltaic Cells under Concentrated Illumination: A Critical Review
,”
Sol. Energy Mater. Sol. Cells
,
86
(
4
), pp.
451
483
.
16.
Ohta
,
H.
, 2005, “
Boiling and Two-Phase Flow in Channels With Extremely Small Dimensions: A Review of Japanese Research
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
94
107
.
17.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
, 2006, “
Characterization of Liquid Flows in Microfluidic Systems
,”
Int. J. Heat Mass Transfer
,
49
(
5
), pp.
815
824
.
18.
Tardist
,
L.
, 2007, “
Review on Two-Phase Instabilities in Narrow Spaces
,”
Int. J. Heat Fluid Flow
,
28
(
1
), pp.
54
62
.
19.
Agostini
,
B.
,
Fabbri
,
M.
, and
Park
,
J. E.
, 2007, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
20.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
, 2007, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.
21.
Saisorn
,
S.
, and
Wongwises
,
S.
, 2008, “
A Review of Two-Phase Gas-Liquid Adiabatic Flow Characteristics in Micro-Channels
,”
Renewable Sustainable Energy Rev.
,
12
(
3
), pp.
824
838
.
22.
Kandlikar
,
S. G.
, 2008, “
Exploring Roughness Effect on Laminar Internal Flow—Are We Ready for Change?”
Nanoscale Microscale Thermophys. Eng.
,
12
(
1
), pp.
61
82
.
23.
Fan
,
Y.
, and
Luo
,
L. G.
, 2008, “
Recent Applications of Advances in Microchannel Heat Exchangers and Multi-Scale Design Optimization
,”
Heat Transfer Eng.
,
29
(
5
), pp.
461
474
.
24.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
2
), pp.
187
227
.
25.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
A Review of the Critical Heat Flux Condition in Mini- and Microchannels
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2529
2547
.
26.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
, 2009, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3447
3468
.
27.
Saha
,
S. K.
,
Zummo
,
G.
, and
Celata
,
G. P.
, 2010, “
Review on Flow Boiling in Microchannels
,”
Int. J. Microscale, Nanoscale, Therm. Fluid Transport Phenomena
,
1
(
2
), pp.
111
178
.
28.
Obot
,
N. T.
, 2002, “
Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels—a Literature Review
,”
Microscale Thermophys. Eng.
,
6
(
3
), pp.
155
173
.
29.
Sasaki
,
S.
, and
Kishimoto
,
T.
, 1986, “
Optimal Structure for Microgrooved Cooling Fin for High-Power Lsi Devices
,”
Electron. Lett.
,
22
(
25
), pp.
1332
1334
.
30.
Kishimoto
,
T.
, and
Sasaki
,
S.
, 1987, “
Cooling Characteristics of Diamond-Shaped Interrupted Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
23
(
9
), pp.
456
457
.
31.
Phillips
,
R. J.
,
Glicksman
,
L.
, and
Larson
,
R.
, 1987, “
Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks for High-Power-Density Microelectronics
,”
Proc. Cooling Technology for Electronic Equipment
,
W.
Aung
, ed.,
Honolulu
,
HI
, pp.
295
316
.
32.
Walpole
,
J. N.
,
Liau
,
Z. L.
,
Diadiuk
,
V.
, and
Missaggia
,
L. J.
, 1988, “
Microchannel Heat Sinks and Microlens Arrays for High Average-Power Diode Laser Arrays
,”
Proc. LEOS ‘88—Lasers and Electro-Optics Society Annual Meeting
, November 2–4, 1988,
Santa Clara
,
CA
, pp.
447
448
.
33.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization With Application to Microchannels,” IEEE Trans. Compon., Hybrids
,
Manuf. Technol.
,
15
(
5
), pp.
832
842
.
34.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
,
7
(
4
), pp.
249
264
.
35.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Heat Transfer Characteristics of Water Flowing Through Microchannels
,”
Exp. Heat Transfer
,
7
(
4
), pp.
265
283
.
36.
Harris
,
C.
,
Despa
,
M.
, and
Kelly
,
K.
, 2000, “
Design and Fabrication of a Cross Flow Micro Heat Exchanger
,”
J. Microelectromech. Syst.
,
9
(
4
), pp.
502
508
.
37.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.
38.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
39.
Qu
,
W. L.
, and
Mudawar
,
I.
, 2002, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
40.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2003, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
41.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2547
2556
.
42.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
, 2003, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.
43.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
, 2003, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
284
298
.
44.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2004, “
Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.
45.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
Proc. Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004)
, June 17–19, 2004,
Rochester, NY
, pp.
141
148
.
46.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
, 2004, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2817
2830
.
47.
Sharp
,
K. V.
, and
Adrian
,
R. J.
, 2004, “
Transition from Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
,
36
(
5
), pp.
741
747
.
48.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2005, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2652
2661
.
49.
Lee
,
P.-S.
,
Garimella
,
V.
, and
Dong
,
L.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
50.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
Labianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J.
, and
Schmidt
,
R.
, 2005, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
Proc. 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, March 15–17, 2005,
San Jose
,
CA
, pp.
1
7
.
51.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
, 2005, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
),
100606
.
52.
Celata
,
G. P.
,
Cumo
,
M.
,
Mcphail
,
S.
, and
Zummo
,
G.
, 2006, “
Characterization of Fluid Dynamic Behavior and Channel Wall Effects in Microtube
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
135
143
.
53.
Tuckerman
,
D. B.
, 1984,
Heat-Transfer Microstructures for Integrated Circuits
,
Stanford University
,
Stanford, CA
.
54.
Mundinger
,
D.
,
Beach
,
R.
,
Benett
,
W.
,
Solarz
,
R.
,
Krupke
,
W.
,
Staver
,
R.
, and
Tuckerman
,
D.
, 1988, “
Demonstration of High-Performance Silicon Microchannel Heat Exchangers for Laser Diode Array Cooling
,”
Appl. Phys. Lett.
,
53
(
12
), pp.
1030
1032
.
55.
Phillips
,
R. J.
, 1987,
Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks
,
MSME Massachusetts Institute of Technology
,
Cambridge, MA
.
56.
Phillips
,
R. J.
, 1990,
Advances in Thermal Modeling of Electronic Components and Systems
,
ASME
,
New York
, Chap. 3.
57.
Missaggia
,
L. J.
,
Walpole
,
J. N.
,
Liau
,
Z. L.
, and
Phillips
,
R. J.
, 1989, “
Microchannel Heat Sinks for Two-Dimensional High-Power-Density Diode Laser Arrays
,”
IEEE J. Quantum Electron.
,
25
(
9
), pp.
1988
1992
.
58.
Turlik
,
I.
,
Reisman
,
A.
,
Darveaux
,
R.
, and
Hwang
,
L. T.
, 1989, “
Multichip Packaging for Supercomputers
,”
Proc. Proceedings of the Technical Program. NEPCON West ‘89
, 13–15 June 1989,
Anaheim
,
CA
, pp.
37
58
.
59.
Bar-Cohen
,
A.
, and
Jelinek
,
M.
, 1985, “
Optimum Arrays of Longitudinal, Rectangular Fins in Convective Heat Transfer
,”
Heat Transfer Eng.
,
6
(
3
), pp.
68
78
.
60.
Bejan
,
A.
, and
Morega
,
A. M.
, 1993, “
Optical Arrays of Pin Fins and Plate Fins in Laminar Forced Convection
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
75
81
.
61.
Peng
,
X. F.
, and
Wang
,
B. X.
, 1993, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.
62.
Wang
,
B. X.
, and
Peng
,
X. F.
, 1994, “
Experimental Investigation on Liquid Forced Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
73
82
.
63.
Mala
,
G. M.
,
Dongqing
,
L.
, and
Dale
,
J. D.
, 1997, “
Heat Transfer and Fluid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3079
3088
.
64.
Mala
,
G. M.
, and
Dongqing
,
L.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.
65.
Xu
,
B.
,
Ooi
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
, 2000, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
27
(Copyright 2001, IEE), pp.
1165
1176
.
66.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.
67.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1925
1935
.
68.
Kandlikar
,
S. G.
, 2010, “
Microchannels: Rapid Growth of a Nascent Technology
,”
ASME J. Heat Transfer
,
132
(
4
), p.
040301
.
69.
Peles
,
Y. P.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
70.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,” Paper No. ICNMM2006-96227,
ASME Fourth International Conference on Nanochannels, Microchannels and Minichannels
, June 19–21,
Limerick
,
Ireland
, 2006B, pp.
943
951
.
71.
Garimella
,
S. V.
, and
Singhal
,
V.
, 2004, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
(
1
), pp.
15
25
.
72.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
, 2005, “
Extending the Heat Flux Limit With Enhanced Microchannels in Dorect Single-phase Cooling of Computer Chips
,”
Proceedings of Twenty-First Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, March 15–17, 2005, pp.
8
15
.
73.
Liu
,
D.
, and
Garimella
,
S. V.
, 2005, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.
74.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2006, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.
75.
Kandlikar
,
S. G.
, 2005, “
Roughness Effects at Microscale—Reassessing Nikuradse’s Experiments on Liquid Flow in Rough Tubes
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
53
(
4
), pp.
343
349
.
76.
Taylor
,
J. B.
,
Carrano
,
A. L.
, and
Kandlikar
,
S. G.
, 2006, “
Characterization of the Effect of Surface Roughness and Texture on Fluid Flow—Past, Present, and Future
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
962
968
.
77.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
, 2010, “
Application of Lubrication Theory and Study of Roughness Pitch During Laminar, Transition, and Low Reynolds Number Turbulent Flow at Microscale
,”
Heat Transfer Eng.
,
31
(
8
), pp.
635
645
.
78.
Rawool
,
A. S.
,
Mitra
,
S. K.
, and
Kandlikar
,
S. G.
, 2006, “
Numerical Simulation of Flow Through Microchannels With Designed Roughness
,”
Microfluid. Nanofluid.
,
2
(
3
), pp.
215
221
.
79.
Croce
,
G.
,
D’agaro
,
P.
, and
Nonino
,
C.
, 2007, “
Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5249
5259
.
80.
Kleinstreuer
,
C.
, and
Koo
,
J.
, 2004, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
J. Fluids Eng.
,
126
(
1
), pp.
1
9
.
81.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Fully-Developed, Laminar Flow in Microchannel of Arbitrary Cross-Section
,”
J. Fluids Eng.
,
128
(
3
), pp.
632
637
.
82.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
353
364
.
83.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.
84.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Salvigni
,
S.
, and
Celata
,
G. P.
, 2010, “
Experimental Analysis of Microconvective Heat Transfer in the Laminar and Transitional Regions
,”
Exp. Heat Transfer
,
23
(
1
), pp.
73
93
.
85.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
, 2009, “
Modelling of Roughness Effects on Heat Transfer in Thermally Fully-Developed Laminar Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2203
2214
.
86.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
, 1979,
Advances in Applied Mechanics
,
Elsevier
,
Amsterdam
.
87.
Hu
,
Y. D.
,
Werner
,
C.
, and
Li
,
D. Q.
, 2003, “
Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels
,”
J. Fluids Eng.
,
125
(
5
), pp.
871
879
.
88.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
, 2005, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
.
89.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Juan
,
W.-C.
, 2005, “
Influence of Channel Height on Heat Transfer Augmentation in Rectangular Channels With Two Opposite Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2806
2813
.
90.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
, 2007, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
J. Electron. Packag.
,
129
(
1
), pp.
63
70
.
91.
Kosar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of Mems-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.
92.
Foong
,
A. J. L.
,
Ramesh
,
N.
, and
Chandratilleke
,
T. T.
, 2009, “
Laminar Convective Heat Transfer in a Microchannel With Internal Longitudinal Fins
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1908
1913
.
93.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Iyer
,
M. K.
,
Nagarajan
,
R.
,
Joshi
,
Y. K.
,
Wong
,
T. N.
, and
Toh
,
K. C.
, 2005, “
Assessments of Single-Phase Liquid Cooling Enhancement Techniques for Microelectronics Systems
,”
Proc. ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005
, July 17–22, 2005,
San Francisco
,
CA
, PART A, pp.
43
50
.
94.
Tsuzuki
,
N.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Ishizuka
,
T.
, 2009, “
Advanced Microchannel Heat Exchanger With S-Shaped Fins
,”
J. Nucl. Sci. Technol.
,
46
(
5
), pp.
403
412
.
95.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
96.
Xuan
,
Y. M.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
97.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
98.
Choi
,
S. U. S.
, and
Jang
,
S. P.
, 2006, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2457
2463
.
99.
Chein
,
R.
, and
Chuang
,
J.
, 2007, “
Experimental Microchannel Heat Sink Performance Studies Using Nanofluids
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
57
66
.
100.
Chein
,
R. Y.
, and
Huang
,
G. M.
, 2005, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
3104
3114
.
101.
Jung
,
J.-Y.
,
Oh
,
H.-S.
, and
Kwak
,
H.-Y.
, 2009, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
466
472
.
102.
Bergman
,
T. L.
, 2009, “
Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Forced Convection
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1240
1244
.
103.
Trisaksri
,
V.
, and
Wongwises
,
S.
, 2007, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
3
), pp.
512
523
.
104.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
, 2006, “
Heat Transfer in Nanofluids—a Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
105.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
106.
Ozerinc
,
S.
,
Kakac
,
S.
, and
Yazicioglu
,
A. G.
, 2010, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.
107.
Chandrasekar
,
M.
, and
Suresh
,
S.
, 2009, “
A Review on the Mechanisms of Heat Transport in Nanofluids
,”
Heat Transfer Eng.
,
30
(
14
), pp.
1136
1150
.
108.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.
109.
Yu
,
W. H.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
, 2008, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.
110.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008, “
Thermophysical and Electrokinetic Properties of Nanofluids—a Critical Review
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2109
2125
.
111.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
, 2010, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
504
513
.
112.
Miner
,
A.
, and
Ghoshal
,
U.
, 2006, “
Limits of Heat Removal in Microelectronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
4
), pp.
743
749
.
113.
Moriyama
,
K.
,
Inoue
,
A.
, and
Ohira
,
H.
, 1992, “
Thermohydraulic Characteristics of Two-Phase Flow in Extremely Narrow Channels (the Frictional Pressure Drop and Void Fraction of Adiabatic Two-Component Two-Phase Flow)
,”
Heat Transfer–Jpn. Res.
,
21
(
8
), pp.
823
837
.
114.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.
115.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Phase Change in Microchannel Heat Sinks With Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
,
8
(
4
), pp.
358
365
.
116.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
, 2000, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
1
), pp.
16
23
.
117.
Kandlikar
,
S. G.
,
Tian
,
S.
,
Steinke
,
M. E.
, and
Campbell
,
L. A.
, 2001, “
High-Speed Photographic Observation of Flow Boiling of Water in Parallel Mini-Channels
,”
Proc. 2001 National Heat Transfer Conference (NHTC 2001)
, June 10–12, 2001,
Anaheim
,
CA
, 1, pp.
675
684
.
118.
Jacobi
,
A. M.
, and
Thome
,
J. R.
, 2002, “
Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1131
1136
.
119.
Serizawa
,
A.
,
Feng
,
Z.
, and
Kawara
,
Z.
, 2002, “
Two-Phase Flow in Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
703
714
.
120.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2003, “
Two-Phase Flow Patterns in Parallel Microchannels
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
341
360
.
121.
Yen
,
T.-H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2003, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1771
1792
.
122.
Kandlikar
,
S. G.
, 2003, “
Methods for Stabilizing Flow in Channels and Systems Thereof
,” US Patent Application No. 20090266436.
123.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.
124.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.
125.
Kosar
,
A.
, and
Peles
,
Y.
, 2006, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3142
3155
.
126.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
, 2005, “
Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in a Microchannel
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
137
145
.
127.
Kandlikar
,
S. G.
,
Willistein
,
D. A.
,
Borrelli
,
J.
, and ASME, 2005, “
Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Stabilizing Flow Boiling in Minichannels and Microchannels
,”
Proceedings of the 3rd International Conference on Microchannels and Minichannels
, June 13–15,
ASME
, pp.
115
124
.
128.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
129.
Kosar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4867
4886
.
130.
Kosar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y. P.
, 2006, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.
131.
Kandlikar
,
S. G.
, 2006, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.
132.
Armstrong
,
R. J.
, 1966, “
The Temperature Difference in Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1148
1149
.
133.
Hetsroni
,
G.
,
Klein
,
D.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2004, “
Convective Boiling in Parallel Microchannels
,”
Microscale Thermophys. Eng.
,
8
(
4
), pp.
403
421
.
134.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
J. Electron. Packag.
,
126
(
2
), pp.
213
224
.
135.
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J. R.
, 2006, “
An Analysis of Experimental Data and Prediction Methods for Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer in Micro-Scale Channels
,”
Exp. Therm. Fluid Sci.
,
31
(
1
), pp.
1
19
.
136.
Shiferaw
,
D.
,
Huo
,
X.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
, 2007, “
Examination of Heat Transfer Correlations and a Model for Flow Boiling of R134a in Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5177
5193
.
137.
Sun
,
L.
, and
Mishima
,
K.
, 2009, “
An Evaluation of Prediction Methods for Saturated Flow Boiling Heat Transfer in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5323
5329
.
138.
Martin-Callizo
,
C.
,
Palm
,
B.
,
Owhaib
,
W.
, and
Ali
,
R.
, 2010, “
Flow Boiling Visualization of R-134a in a Vertical Channel of Small Diameter
,”
ASME J. Heat Transfer
,
132
(
3
),
031503
.
139.
Schilder
,
B.
,
Man
,
S. Y. C.
,
Kasagi
,
N.
,
Hardt
,
S.
, and
Stephan
,
P.
, 2010, “
Flow Visualization and Local Measurement of Forced Convection Heat Transfer in a Microtube
,”
ASME J. Heat Transfer
,
132
(
3
),
031702
.
140.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2009, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.
141.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.
142.
Zhang
,
Y.
,
Utaka
,
Y.
, and
Kashiwabara
,
Y.
, 2009, “
Formation Mechanism and Characteristics of a Liquid Microlayer in Microchannel Boiling System
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122403
.
143.
Zhang
,
L.
,
Koo
,
J.-M.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
, 2002, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
,
11
(
1
), pp.
12
19
.
144.
Cooper
,
M. G.
, 1984, “
Heat Flow Rates in Saturated Nucleate Pool Boiling
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.
145.
Qu
,
W. L.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2773
2784
.
146.
Kandlikar
,
S. G.
, 2010, “
Similarities and Differences between Flow Boiling in Microchannels and Pool Boiling
,”
Heat Transfer Eng.
,
31
(
3
), pp.
159
167
.
147.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
, and
Mukherjee
,
A.
, 2005, “
Experimental Study of Heat Transfer in an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
244
252
.
148.
Myers
,
J. G.
,
Yerramilli
,
V. K.
,
Hussey
,
S. W.
,
Yee
,
G. F.
, and
Kim
,
J.
, 2005, “
Time and Space Resolved Wall Temperature and Heat Flux Measurements During Nucleate Boiling With Constant Heat Flux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2429
2442
.
149.
Moghaddam
,
S.
, and
Kiger
,
K.
, 2009, “
Physical Mechanisms of Heat Transfer During Single Bubble Nucleate Boiling of Fc-72 Under Saturation Conditions-I. Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1284
1294
.
150.
Megahed
,
A.
, and
Hassan
,
I.
, 2010, “
Analytical Modeling of Annular Flow Boiling Heat Transfer in Mini- and Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
132
(
4
),
041012
.
151.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.
152.
Peles
,
Y. P.
, and
Haber
,
S.
, 2000, “
A Steady State, One Dimensional, Model for Boiling Two Phase Flow in Triangular Micro-Channel
,”
Int. J. Multiphase Flow
,
26
(
7
), pp.
1095
1115
.
153.
Consolini
,
L.
, and
Thome
,
J. R.
, 2010, “
A Heat Transfer Model for Evaporation of Coalescing Bubbles in Micro-Channel Flow
,”
Int. J. Heat Fluid Flow
,
31
(
1
), pp.
115
125
.
154.
Fogg
,
D. W.
, and
Goodson
,
K. E.
, 2009, “
Bubble-Induced Water Hammer and Cavitation in Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
131
(
12
),
121006
.
155.
Krishnamurthy
,
S.
, and
Peles
,
Y.
, 2010, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
ASME J. Heat Transfer
,
132
(
4
),
041002
.
156.
Cheng
,
L.
,
Bandarra
,
E. P.
, and
Thome
,
J. R.
, 2008, “
Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Its Challenges
,”
J. Nanosci. Nanotechnol.
,
8
(
7
), pp.
3315
3332
.
157.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
, 2009, “
Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-Channel
,”
Int. J. Heat Mass Transfer
,
52
(
5
), pp.
3805
3817
.
158.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.
159.
Ahn
,
H. S.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Chang
,
W.
, and
Kim
,
M. H.
, 2010, “
Experimental Study of Critical Heat Flux Enhancement During Forced Convective Flow Boiling of Nanofluid on a Short Heated Surface
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
375
384
.
160.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2603
2614
.
161.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2005, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
31
(
4
), pp.
371
392
.
162.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
8
16
.
163.
Brutin
,
D.
, and
Tadrist
,
L.
, 2006, “
Destabilization Mechanisms and Scaling Laws of Convective Boiling in a Minichannel
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
850
855
.
164.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
, 2009, “
Instability Phenomena in a Two-Phase Microchannel Thermosyphon
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1701
1708
.
165.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M.
,
Wen
,
J.
, and
Phelan
,
P.
, 2009, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5661
5674
.
166.
Zhang
,
T. J.
,
Peles
,
Y.
,
Wen
,
J. T.
,
Tong
,
T.
,
Chang
,
J. Y.
,
Prasher
,
R.
, and
Jensen
,
M. K.
, 2010, “
Analysis and Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2347
2360
.
167.
Tanaka
,
F.
,
Hibiki
,
T.
, and
Mishima
,
K.
, 2009, “
Correlation for Flow Boiling Critical Heat Flux in Thin Rectangular Channels
,”
ASME J. Heat Transfer
,
131
(
12
),
121003
.
168.
Kandlikar
,
S. G.
, 2010, “
A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels
,”
ASME J. Heat Transfer
,
132
(
8
),
081501
.
169.
Revellin
,
R.
, and
Thome
,
J. R.
, 2008, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1216
1225
.
170.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
.
171.
Katto
,
Y.
, and
Ohno
,
H.
, 1984, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1641
1648
.
172.
Shah
,
M. M.
, 1987, “
Improved General Correlation for Critical Heat Flux During Upflow in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
326
335
.
173.
Kosar
,
A.
, and
Peles
,
Y.
, 2007, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
844
851
.
174.
Park
,
J. E.
, and
Thome
,
J. R.
, 2010, “
Critical Heat Flux in Multi-Microchannel Copper Elements With Low Pressure Refrigerants
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
110
122
.
175.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
Study of the Critical Heat Flux Condition With Water and R-123 During Flow Boiling in Microtubes. Part II—Comparison of Data With Correlations and Establishment of a New Subcooled CHF Correlation
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3250
3256
.
176.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
, 2006, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1058
1072
.
177.
Kosar
,
A.
,
Peles
,
Y.
,
Bergles
,
A. E.
, and
Cole
,
G. S.
, 2009, “
Experimental Investigation of Critical Heat Flux in Microchannels for Flow-Field Probes
,” Paper No. ICNMM2009-82214,
ASME Seventh Int. Conference on Nanochannels, Microchannels, and Minichannels
, June 22–24,
Pohang
,
South Korea
.
178.
Kandlikar
,
S. G.
, 2010, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.
179.
Kandlikar
,
S. G.
, 2010, “
A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels
,”
ASME J. Heat Transfer
,
132
(
8
),
081501
.
180.
Palmer
,
H. J.
, 1976, “
The Hydrodynamic Stability of Rapidly Evaporating Liquids at Reduced Pressure
,”
J. Fluid Mech.
,
75
(
3
), pp.
487
511
.
181.
Sefiane
,
K.
,
Benielli
,
D.
, and
Steinchen
,
A.
, 1998, “
A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence
,”
Colloids Surf., A
,
142
(
2–3
), pp.
361
373
.
182.
Schweizer
,
N.
,
Freystein
,
M.
, and
Stephan
,
P.
, “
High Resolution Measurement of Wall Temperature during Forced Convection Boiling in a Single Microchannel
,” Paper FEDSM-ICNMM2010-30273,
ASME Eighth ASME International Conference on Microchannels and Minichannels
, August 1–5,
Montreal
,
Canada
.
183.
Ozer
,
A.B.
,
Oncel
,
A.F.
,
Hollingsworth
,
D.K.
, and
Witte
,
L.C.
, “
The Onset of Nucleate Boiling of a Subcooled Liquid Flowing in a Narrow Channel
,” Paper IHTC-14-22689,
14th International Heat Transfer Conference
,
ASME
,
Washington, DC
.
184.
Kim
,
M.-H.
,
Lee
,
S.
,
Mehendale
,
S.
, and
Webb
,
R. L.
, 2003,
Advances in Heat Transfer
,
Elsevier
,
San Diego
.
185.
Zhang
,
L. K.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2004,
Silicon Microchannel Heatsinks: Theories and Phenomena.
,
Springer-Verlag
,
Berlin
.
186.
Hsu
,
Y. Y.
, and
Graham
,
R. W.
, 1961, “
An Analytical and Experimental Study of the Thermal Boundary Layer and Ebullition Cycle in Nucleate Boiling
,” NASA-TN-D-594,
43
pages.
187.
Celata
,
G. L.
, 2004,
Series in Thermal and Fluid Physics and Engineering
,
Begell House
,
New York
.
188.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier, Kidlington
,
Oxford, United Kingdom
.
189.
Yarin
,
L. P.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
, 2009,
Fluid Flow, Heat Transfer and Boiling in Micro-Channels
,
Springer-Verlag
,
Berlin
.
190.
Kirby
,
B. J.
, 2010,
Micro- and Nanoscale Fluid Mechanics
,
Cambridge University
,
New York
.
You do not currently have access to this content.