Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

References

References
1.
Forsberg
,
C. W.
, 2005, “
The Hydrogen Economy is Coming. The Question is Where?
,”
Chem. Eng. Prog.
,
101
(
12
), pp.
20
22
.
2.
Lewis
,
D.
, 2008, “
Hydrogen and Its Relationship With Nuclear Energy
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
394
401
.
3.
Kruger
,
P.
, 2009, “
Nuclear Production of Hydrogen as an Appropriate Technology
,”
Nucl. Technol.
,
166
(
1
), pp.
11
17
.
4.
Forsberg
,
C. W.
, 2007, “
Future Hydrogen Markets for Large-Scale Hydrogen Production Systems
,”
Int. J. Hydrogen Energy
,
32
(
4
), pp.
431
439
.
5.
Duffey
,
R. B.
, 2009, “
Nuclear Production of Hydrogen: When Worlds Collide
,”
Int. J. Energy Res.
,
33
(
2
), pp.
126
134
.
6.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
, 2007, “
Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
927
931
.
7.
Rand
,
D. A. J.
, and
Dell
,
R. M.
, 2008,
Hydrogen Energy: Challenges and Prospects
,
Royal Society of Chemistry
,
Cambridge, United Kingdom
.
8.
Floch
,
P -H.
,
Gabriel
,
S.
,
Mansilla
,
C.
, and
Werkoff
,
F.
, 2007, “
On the Production of Hydrogen via Alkaline Electrolysis During Off-Peak Periods
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
4641
4647
.
9.
Schultz
,
K. R.
,
Brown
,
L. C.
,
Besenbruch
,
G. E.
, and
Hamilton
,
C. J.
, 2003,
“Large-Scale Production of Hydrogen by Nuclear Energy for the Hydrogen Economy,”
General Atomics, p.
22
, Report No. GA-A24265.
10.
O’Brien
,
J. E.
,
Stoots
,
C. M.
,
Herring
,
J. S.
, and
Hartvigsen
,
J. J.
, 2007, “
Performance of Planar High-Temperature Electrolysis Stacks for Hydrogen Production From Nuclear Energy
,”
Nucl. Technol.
,
158
(
2
), pp.
118
131
.
11.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
12.
Southworth
,
F.
,
Macdonald
,
P. E.
,
Harrell
,
D. J.
,
Park
,
C. V.
,
Shaber
,
E. L.
,
Holbrook
,
M. R.
, and
Petti
,
D. A.
, 2003, “
The Next Generation Nuclear Plant (NGNP) Project
,” Proceedings,
Global
, pp.
276
287
.
13.
Elder
,
R.
, and
Allen
,
R.
, 2009, “
Nuclear Heat for Hydrogen Production: Coupling a Very High/High Temperature Reactor to a Hydrogen Production Plant
,”
Prog. Nucl. Energy
,
51
(
3
), pp.
500
525
.
14.
Yildiz
,
B.
, and
Kazimi
,
M. S.
, 2006, “
Efficiency of Hydrogen Production Systems Using Alternative Nuclear Energy Technologies
,”
Int. J. Hydrogen Energy
,
31
(
1
), pp.
77
92
.
15.
O’Brien
,
J. E.
,
McKellar
,
M. G.
, and
Herring
,
J. S.
, 2008, “
Performance Predictions for Commercial-Scale High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types
,”
Proceedings of International Congress on Advances in Nuclear Power Plants
,
Anaheim
, CA.
16.
Utgikar
,
V.
, and
Thiesen
,
T.
, 2006, “
Life Cycle Assessment of High Temperature Electrolysis for Hydrogen Production via Nuclear Energy
,”
Int. J. Hydrogen Energy
,
31
, pp.
939
944
.
17.
Friedrich
,
R.
,
Rabl
,
A.
, and
Spadaro
,
J. V.
, 2001, “
Quantifying the Costs of Air Pollution: the ExternE Project of the EC
,” Pollution Atmospherique, pp.
77
104
.
18.
Jacobson
,
M. Z.
, 2009, “
Review of Solutions to Global Warming, Air Pollution, and Energy Security
,”
Energy Environ. Sci.
,
2
(
2
), pp.
148
173
.
19.
Arashi
,
H.
,
Naito
,
H.
, and
Miura
,
I.
, 1991, “
Hydrogen Production From High-Temperature Steam Electrolysis Using Solar Energy
,”
Int. J. Hydrogen Energy
,
16
(
9
), pp.
603
608
.
20.
Hawkes
,
G. L.
, and
McKellar
,
M. G.
, 2009,
“Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis,”
AIChE Annual Meeting
,
Nashville, TN
.
21.
Forsberg
,
C. W.
, 2009, “
Economics of Meeting Peak Electricity Demand Using Hydrogen and Oxygen From Base-Load Nuclear or Off-Peak Electricity
,”
Nucl. Technol.
,
166
(
1
), pp.
18
26
.
22.
Nomura
,
M.
,
Kasahara
,
S.
, and
Onuki
,
K.
, 2003, “
Estimation of Thermal Efficiency to Produce Hydrogen From Water Through IS Process
,”
Proceedings of 2nd Topical Conference on Fuel Cell Technology
,
AIChE Spring National Meeting
,
New Orleans
.
23.
Abraham
,
B. M.
, and
Schreiner
,
F.
, 1974, “
General Principles Underlying Chemical Cycles Which Thermally Decompose Water Into the Elements
,”
Ind. Eng. Chem. Fundam.
,
13
(
4
), pp.
305
310
.
24.
Fletcher
,
E. A.
, and
Moen
,
R. L.
, 1977, “
Hydrogen and Oxygen From Water
,”
Science
,
197
(
4308
), pp.
1050
1056
.
25.
unisim Design, R360 Build 12073, Copyright © 2005-2006 Honeywell International Inc.
26.
Brown
,
L. C.
,
Lentsch
,
R. D.
,
Besenbruch
,
G. E.
,
Schultz
,
K. R.
, 2003, “Alternative Flowsheets for the Sulfur-Iodine Thermochemical Hydrogen Cycle,” General Atomics, p.
24
, Report No. GA-A24266.
27.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
John Wiley & Sons
,
New York.
28.
O’Brien
,
J. E.
,
Stoots
,
C. M.
, and
Hawkes
,
G. L.
, 2005, “
Comparison of a One-Dimensional Model of a High-Temperature Solid-Oxide Electrolysis Stack With CFD and Experimental Results
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
Orlando
.
29.
Stoots
,
C. M.
,
O’Brien
,
J. E.
,
McKellar
,
M. G.
,
Hawkes
,
G. L.
, and
Herring
,
J. S.
, 2005, “
Engineering Process Model for High-Temperature Steam Electrolysis System Performance Evaluation
,” AIChE Annual Meeting,
Cincinnati
.
30.
O’Brien
,
J. E.
,
Stoots
,
C. M.
,
Herring
,
J. S.
,
Lessing
,
P. A.
,
Hartvigsen
,
J. J.
, and
Elangovan
,
S.
, 2005, “
Performance Measurements of Solid-Oxide Electrolysis Cells for Hydrogen Production
,”
J. Fuel Cell Sci. Technol.
,
2
(
3
), pp.
156
163
.
31.
O’Brien
,
J. E.
,
Stoots
,
C. M.
,
Herring
,
J. S.
, and
Hartvigsen
,
J. J.
, 2006, “
Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack
,”
J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
213
219
.
32.
VanderSteen
,
J. D. J.
, 2006, “
Modeling Radiation Heat Transfer With Participating Media in Solid Oxide Fuel Cells
,”
J. Fuel Cell Sci. Technol.
,
3
(
1
), pp.
62
67
.
33.
Prinkey
,
M.
,
Shahnam
,
M.
, and
Rogers
,
W. A.
, 2004, “SOFC fluent Model Theory Guide and User Manual,” Release Version 1.0, Fluent, Inc.
34.
fluent Theory Manual
, 2004, version 6.1.22, Fluent Inc., Lebanon, New Hampshire.
35.
Hawkes
,
G. L.
,
O’Brien
,
J. E.
,
Stoots
,
C. M.
,
Herring
,
J. S.
,
Shahnam
,
M.
, 2005, “
CFD Model of a Planar Solid Oxide Electrolysis Cell for Hydrogen Production From Nuclear Energy
,” 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-11, Avignon,
France
.
You do not currently have access to this content.