During the few decades, computational techniques for simulating heat transfer in complex industrial systems have reached maturity. Combined with increasingly sophisticated modeling of turbulence, chemistry, radiation, phase change, and other physics, powerful computational fluid dynamics (CFD) and computational heat transfer (CHT) solvers have been developed which are beginning to enter the industrial design cycle. In this paper, an overview of emerging simulation needs is first given, and currently-available CFD techniques are evaluated in light of these needs. Emerging computational methods which address some of the failings of current techniques are then reviewed. New research opportunities for computational heat transfer, such as in submicron and multiscale heat transport, are reviewed. As computational techniques and physical models become mature, there is increasing demand for predictive simulation, that is, simulation which is not only verified and validated, but whose uncertainty is also quantified. Current work in the area of sensitivity computation and uncertainty propagation is described.

References

References
1.
Li
,
S.
, and
Liu
,
W. K.
, 2002, “
Meshfree and Particle Methods and Their Applications
,”
Appl. Mech. Rev.
,
55
(
1
), pp.
1
33
.
2.
Mittal
,
R.
, and
Iaccarino
,
G.
, 2005, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
239
261
.
3.
Tezduyar
,
T. E.
,
Sathe
,
S.
, and
Stein
,
K..
, 2006, “
Solution Techniques for the Fully Discretized Equations in Computation of Fluid-Structure Interactions With Space-Time Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5743
5732
.
4.
De
,
S. K.
, and
Aluru
,
N. R.
, 2004, “
Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS
,”
J. Microelectromech. Syst.
,
13
(
5
), p.
737
758
.
5.
Demirdzic
,
I.
, and
Muzaferija
,
S.
, 1995, “
Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes With Cells of Arbitrary Topology
,”
Comput. Meth. Appl. Mech. Eng.
,
125
, pp.
235
255
.
6.
Laux
,
S. E.
, and
Grossman
,
B. M.
, 1984, “
A Generalized Control-Volume Formulation for Modeling Impact Ionization in Semi-Conductor Transport
,”
IEEE Trans. Comput.-Aided Des.
,
4
(
4
) pp.
520
526
.
7.
Griewank
,
A.
, and
Walther
,
A.
, 2008,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
2nd ed.,
SIAM
,
Philadelphia
.
8.
Ghanem
,
R.
, and
Spanos
,
P. D.
, 1991,and
Karniadakis
,
G. E.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
(
2
), p.
619
644
.
9.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
(
2
), p.
619
644
.
10.
“Historical Computing Trends,” The New York Times, Nov. 17, 2008.
11.
Owens
,
J. D.
, 2007, “
A Survey of General-Purpose Computation on Graphics Hardware
,”
Comput. Graph. Forum
,
26
, pp.
80
113
.
12.
“NVIDIA CUDA Complete Unified Device Architecture Programming Guide,” Version 2.0.
13.
Senocak
,
I.
,
Thibault
,
J.
, and
Caylor
,
M.
, 2009, “
Rapid-Response Urban CFD Simulations Using a GPU Computing Paradigm on Desktop Supercomputers
,”
Eighth Symposium on the Urban Environment
,
Phoenix, AZ
, Jan. 10-15.
16.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington DC
.
17.
Vanka
,
S. P.
, 1986, “
Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
,
65
, pp.
138
158
.
18.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1999, “
Coupled Ordinate Method for Multi-grid Acceleration of Radiation Calculations
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
467
473
.
19.
Pope
,
S.
, 2000,
Turbulent Flows
, 1st ed.,
Cambridge University Press
, Cambridge, UK.
20.
Prosperetti
,
A.
, and
Tryggvason
,
G.
, 2009,
Computational Methods for Multiphase Flow
, 1st ed.,
Cambridge University Press
, Cambridge, UK.
21.
Gidaspow
,
D.
, 1994,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
, 1st ed.,
Academic Press
,
San Diego, CA
.
23.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F.
, 1998,
Microscale Energy Transport
,
Taylor and Francis
,
Washington, D.C.
24.
Cola
,
B. A.
,
Xu
,
X..
, and
Fisher
,
T.S.
, 2007, “
Increased Real Contact Resistance in Thermal Interfaces: A Carbon Nanotube Foil Material
,”
Appl. Phys. Lett.
90
, p.
093513
.
25.
Dresselhaus
,
M.
,
Chen
,
G.
,
Tang
,
M. Y.
,
Yang
,
R.
,
Lee
,
H.
,
Wang
,
D.
,
Ren
,
Z.
,
Fluerial
,
J.-P.
, and
Gogna
,
P.
, 2007, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Mater.
,
19
, pp.
1043
1053
.
26.
Seol
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
, 2010, “
Two-dimensional Phonon Transport in Supported Graphene
,”
Science
,
328
(
5975
), pp.
213
216
.
27.
Hadjiconstantinou
,
N. G.
, 1999, “
Hybrid Atomistic-Continuum Formulations and the Moving Contact-Line Problem
,” J. Comput. Phys.,”
J. Comput. Phys
,
154
(
2
), pp.
245
265
.
28.
Choi
,
J. H.
,
Bansal
,
A.
,
Meterelliyoz
,
M.
,
Murthy
,
J. Y.
, and
Roy
,
K.
, 2007, “
Self-Consistent Approach for Leakage Power and Temperature Estimation to Predict Thermal Runaway in FinFET Circuits
,”
IEEE Trans. Comput.-Aided Des.
,
26
(
1
), pp.
2059
2068
.
29.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer
,
31
(
2
), pp.
195
216
.
30.
Davidson
,
L.
, 1996, “
A Pressure-Correction Method for Unstructured Meshes With Arbitrary Control Volumes
,”
Int. J. Numer. Methods Fluids
,
22
, pp.
265
281
.
31.
Baliga
,
B. R.
, 1997, “
Control-Volume Finite Element Methods for Fluid Flow and Heat Transfer
,”
Advances in Numerical Heat Transfer
W. J.
Minkowycz
and
E. M.
Sparrow
, ed.,
Taylor & Francis
,
New York
, Vol.
1
, Chap. III, pp.
97
135
.
32.
Schneider
,
G. E.
, and
Raw
,
M. J.
, 1986, “
Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Co-located Variables—I. Computational Procedures
,”
Numer. Heat Transfer
,
9
, pp.
253
276
.
33.
Acharya
,
S.
,
Baliga
,
B. R.
,
Karki
,
K.
,
Murthy
,
J. Y.
,
Prakash
,
C.
, and
Vanka
,
S. P.
, 2007, “
Pressure-Based Finite-Volume Methods for Computational Fluid Dynamics
,”
ASME J. Heat Transfer
,
129
, pp.
407
424
.
34.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
, 1986, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
,
9
, pp.
511
537
.
35.
Saad
,
Y.
,
Iterative Methods for Sparse Linear Systems
,
SIAM
, 2003, Philadelphia, PA.
36.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
, pp.
1525
1532
.
37.
Webster
,
R.
, 1994, “
An Algebraic Multigrid Solver for Navier-Stokes Problems
,”
Int. J. Numer. Methods in Fluids
,
18
, pp.
761
780
.
38.
Mavriplis
,
D. J.
, 2000, “
Viscous Flow Analysis Using a Parallel Unstructured Multigrid Solver
,”
AIAA J.
,
38
(
11
), pp.
2067
2076
.
39.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting Radiant Heat Transfer in Enclosures With Participating Media
,”
J. Heat Transfer
,
112
, pp.
415
423
.
40.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
313
321
.
41.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 2009, “
A Multigrid Method for the Poisson-Nernst-Planck Equations
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4031
4039
.
42.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2002, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
J. Heat Transfer
,
124
(
6
), pp.
1176
1181
.
43.
Iaccarino
,
G.
, and
Verzicco
,
R.
, 2003, “
Immersed Boundary Technique for Turbulent Flow Simulation
,”
Appl. Mech, Rev.
,
50
(
3
), pp.
331
347
.
44.
Peskin
,
C. S.
, 1981, “
The Fluid Dynamics of Heart Valves: Experimental, Theoretical and Computational Methods
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
235
259
.
45.
Mohd-Yusof
,
J.
, 1997, “
Combined Immersed Boundaries/B-Spline Methods for Simulations of Flows in Complex Geometries
,”
Annual Research Briefs
,
Center for Turbulence Research
, Stanford, CA, pp.
317
328
.
46.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
, 2000, “
Combined Immersed Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Situations
,”
J. Comput. Phys.
,
161
, pp.
37
60
.
47.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
, 2005, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D Geometrically Complex Moving Bodies
,”
J. Comput. Phys.
,
207
, pp.
457
492
.
48.
Gilmanov
,
A.
, and
Acharya
,
S.
, 2008, “
A Hybrid Immersed Boundary and Material Point Method for Simulating 3D Fluid-Structure Interaction Problems
,”
Int. J. Numer. Methods Fluids
,
56
, pp.
2151
2177
.
49.
Kang
,
S.
,
Iaccarino
,
G.
, and
Ham
,
F.
, 2009, “
DNS of Buoyancy-Dominated Turbulent Flows on a Bluff Body Using the Immersed Boundary Method
,”
J. Comput. Phys.
,
228
(
9
), pp.
3189
3208
.
50.
Sun
,
L.
,
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 2009, “
An Unstructured Finite Volume Method for Incompressible Flows With Complex Immersed Boundaries
,”
ASME Paper No. IMECE2009-12917
.
51.
Kang
,
S.
,
Iaccarino
,
G.
,
Ham
,
F.
, and
Moin
,
P.
, 2009, “
Prediction of Wall-Pressure Fluctuation in Turbulent Flows With an Immersed Boundary Method
,”
J. Comput. Phys.
,
228
, pp.
6753
6772
.
52.
Ansys, 2009, “FLUENT 12 User Manual
,”
Ansys Inc.
,
Canonsburg, PA
.
53.
Ashcroft
,
N.W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics,
Harcourt, Inc., Orlando, FL
.
54.
Bazant
,
M. Z.
,
Kaxiras
,
E.
,
Justo
,
J. F.
, 1997, “
Environment-Dependent Interatomic Potential for Bulk Silicon
,”
Phys. Rev. B
56
, pp.
8542
8552
.
55.
Mingo
,
N.
, and
Yang
,
L.
, 2003, “
Predicting the Thermal Conductivity of Si and Ge Nanowires
,”
Nano Lett.
,
3
(
12
), pp.
1713
1716
.
56.
Pascual-Gutierrez
,
J. A.
,
Murthy
,
J. Y.
, and
Viskanta
,
R. V.
, 2009, “
Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential
,”
J. Appl. Phys.
,
106
(
6
), p.
063532
.
57.
Broido
,
D.
,
Ward
,
A.
, and
Mingo
,
N.
, 2005, “
Lattice Thermal Conductivity of Silicon From Empirical Interatomic Potentials
,
Phys. Rev. B
,
72
, p.
014308
.
58.
Henry
,
A. S.
, and
Chen
,
G.
, 2008, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp.
1
12
.
59.
Loy
,
J.
, 2010, “
An Acceleration Technique for the Solution of the Phonon Boltzmann Transport Equation
,”
M.S. thesis
,
Purdue University
,
West Lafayette, IN
.
60.
Loy
,
J.
,
Singh
,
D.
, and
Murthy
,
J. Y.
, 2009, “
Non-Gray Phonon Transport Using a Hybrid BTE-Fourier Solver
,”
ASME Paper No. HT2009-88056.
61.
Choi
,
J. C.
,
Bansal
,
A.
,
Meterelliyoz
,
M.
,
Murthy
,
J. Y.
, and
Roy
,
K.
, 2006, “
Leakage Power Dependent Temperature Estimation to Predict Thermal Runaway in FinFet Circuits
,”
ICCAD
,
San Jose, CA
, Nov.
5
9
.
62.
Ni
,
C.
, 2009, “
Phonon Transport Models for Heat Conduction in Sub-Micron Geometries With Applications to Microelectronics
,”
Ph.D thesis
,
Purdue University
,
West Lafayette
.
63.
Rowlette
,
J.
, and
Goodson
,
K. E.
, 2008, “
Fully-Coupled Non-equlilbrium Electron-Phonon Transport in Nanometer-Scale Silicon FETS
,”
IEEE Trans. Electron Devices
,
55
, pp.
220
232
.
64.
Sinha
,
S.
,
Pop
,
E.
, and
Goodson
,
K. E.
, 2006, “
Non-equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME J. Heat Transfer
,
128
, pp.
638
647
.
65.
Chui
,
E. H.
, and
Raithby
,
G. D.
, 1992, “
Implicit Solution Scheme to Improve Convergence Rate in Radiative Transfer Problems
,”
Numer. Heat Transfer
,
22
, pp.
251
272
.
66.
Fiveland
,
W. A.
, and
Jessee
,
J. P.
, 1996, “
Acceleration Schemes for the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
10
(
3
) pp.
445
451
.
67.
Hassanzadeh
,
P.
,
Raithby
,
G. D.
, and
Chui
,
E. H.
, 2008, “
Efficient Calculation of Radiation Heat Transfer in Participating Media
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
129
139
.
68.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 2009, “
An Acceleration Technique for the Computation of Participating Radiative Heat Transfer
,”
ASME Paper No. IMECE2009-12923
.
69.
Andrea Saltelli
, Editor, 2009, “
Special Issue on Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1133
1244
.
70.
Martins
,
J.
,
Kroo
,
I. M.
, and
Alonso
,
J. J.
, 2000, “
An Automated Method for Sensitivity Analysis Using Complex Variables
,” Paper No. AIAA-2000-0689.
71.
Jameson
,
A.
, 2003, “
Aerodynamic Shape Optimization Using the Adjoint Method
,”
Aerodynamic Drag Prediction and Reduction (VKI Lecture Series), von Karman Institute of Fluid Dynamics
,
Rhode St Genese
, pp.
3
7
.
72.
Nadarajah
,
S. K.
, and
Jameson
,
A.
, 2005, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,”
AIAA Paper 2005–324
.
73.
Jemcov
,
A.
, and
Mathur
,
S. R.
, 2004, “
Algorithmic Differentiation of General Purpose CFD Code: Implementation and Verification
,”
ECCOMAS 2004
,
Jyvaskyla, Finland.
, 24–28 July.
74.
Jemcov
,
A.
, and
Mathur
,
S.
, 2005, ”
Sensitivity Analysis and Uncertainty Propagation in Compressible Inviscid Flows
,”
6th World Congress of Structural and Multidisciplinary Optimization
,
Rio de Janeiro
,
Brazil
, 30 May–03 June.
75.
Mathur
,
S.
, 2009, Personal Communication.
76.
Mathur
,
S.
,
Murthy
,
J. Y.
, and
Chai
,
J. C.
, 2009, unpublished work.
77.
Heidmann
,
J. D.
, 2008, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,”
ASME Paper No. GT2008-50845
.
78.
Dhungel
,
S.
,
Phillips
,
A.
,
Ekkad
,
S.
, and
Heidmann
,
J. D.
, 2007, “
Experimental Investigations of a Novel Anti-Vortex Design
,” ASME Paper GT2007-27419.
79.
ASME, 2009, “Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer,” No. ASME V&V 20, ASME, New York
.
80.
Guo
,
X.
, and
Alexeenko
,
A.
, 2009, “
Compact Model for Squeeze Film Damping Based on Rarefied Flow Simulations
,
J. of Micromech. Microeng.
19
, p.
045026
.
81.
Ozdoganlar
,
O. B.
,
Hansche
,
B. D.
, and
Carne
,
T. G.
, 2005, “
Experimental Modal Analysis for Micromechanical Systems
,”
Experimental Mechanics
,
45
(
6
), pp.
498
506
.
82.
Xiu
,
D.
, and
Hesthaven
,
J.
, 2005, “
Higher-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
2
), pp.
1118
1139
.
83.
Smolyak
,
S.
, 1963, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Soviet Math. Dokl.
v4.
, pp.
240
243
.
84.
Murthy
,
J.
,
Mathur
,
S.
,
Pax
,
B.
,
Chigullapalli
,
A.
,
Li
,
J.
, and
Xiu
,
D.
, 2009,
unpublished results
.
85.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N. R.
, 2005,
Microflows and Nanoflows
,
Springer
,
New York
.
86.
Agarwal
,
N.
, and
Aluru
,
N. R.
, 2009, “
A Domain Adaptive Stochastic Collocation Approach for Analysis of MEMS Under Uncertainties
,”
J. Comp. Phys.
,
228
(
20
), pp.
7662
7668
.
87.
Mathur
,
S.
,
Chigullapalli
,
A.
, and
Murthy
,
J.Y.
, “
A Unified Unintrusive Discrete Approach to Sensitivity Analysis and Uncertainty Propagation in Fluid Flow Simulations
,”
ASME Paper No. IMECE2010-37789
.
You do not currently have access to this content.