The morphology of a porous medium is now generally known from X and γ ray tomography techniques. From these data and radiative properties at the pore scale, a homogenized medium associated with a porous medium phase is exhaustively characterized by radiative statistical functions, i.e., by a statistical cumulative extinction distribution function, absorption, and scattering cumulative probabilities and a general scattering phase function. The accuracy is only limited by the tomography resolution or the geometrical optics validity. When this homogenized medium follows the Beer’s laws, extinction, absorption, and scattering coefficients are identified from these statistical functions; a classical radiative transfer equation (RTE) can then be used. In all other cases, a generalized radiative transfer equation (GRTE) is directly expressed from the radiative statistical functions. When the homogenized medium is optically thick at a spatial scale such as it is practically isothermal, the radiative transfer can simply be modeled from a radiative Fourier’s law. The radiative conductivity is directly determined by a perturbation technique of the GRTE or RTE. An accurate validity criterion of the radiative Fourier’s law has recently been defined. Some paths for future research are finally given.

References

1.
Baillis
,
D.
, and
Sacadura
,
J.
, 2000. “
Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization
,”
J. Quant. Spectrosc. Radiat. Transfer
,
5
(
67
), pp.
327
363
.
2.
Glicksman
,
L.
,
Mozgowiec
,
M.
, and
Torpey
,
M.
, 1990. “
Radiation Heat Transfer in Foam Insulation
,” Proceedings of 9th International Heat Transfer Conference, Jerusalem,
H. P.
Corp
., ed., Vol.
6
, pp.
379
384
.
3.
Glicksman
,
L.
,
Marge
,
A.
, and
Moreno
,
J.
, 1992. “
Radiation Heat Transfer in Cellular Foam Insulation
,”
ASME HTD
,
203
, pp.
45
54
.
4.
Kuhn
,
J.
,
Ebert
,
H.
,
Arduini-Schuster
,
M.
,
Buttner
,
D.
, and
Fricke
,
J.
, 1992. “
Thermal Transport in Polystyrene and Polyurethane Foam Insulation
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1795
1801
.
5.
Doermann
,
D.
, and
Sacadura
,
J. F.
, 1996. “
Heat Transfer in Open Cell Foam Insulation
,”
J. Heat Transfer
,
118
, pp.
88
93
.
6.
Placido
,
E.
,
Arduini-Schuster
,
M. C.
, and
Kuhn
,
J.
, 2005. “
Thermal Properties Predictive Model for Insulating Foams
,”
Infrared Phys. Technol.
,
46
(
3
), pp.
219
231
.
7.
Hendricks
,
T.
, and
Howell
,
J.
, 1996. “
Absorption/Scattering Coefficients and Scattering Phase Function in Reticulated Porous Ceramics
,”
J. Heat Transfer
,
118
, pp.
79
87
.
8.
Loretz
,
M.
,
Coquard
,
C.
,
Baillis
,
D.
, and
Maire
,
E.
, 2008. “
Metallic Foams: Radiative Properties/Comparison Between Different Models
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
, pp.
16
27
.
9.
Kaemmerlen
,
A.
,
Vo
,
C.
,
Jeandel
,
G.
, and
Baillis
,
D.
, 2010. “
Radiative Properties of Extruded Polystyrene Foams: Predictive Model and Experimental Results
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
, pp.
865
877
.
10.
Baillis
,
D.
,
Arduini-Schuster
,
M. C.
, and
Sacadura
,
J.
, 2002. “
Identification of Spectral Radiative Properties of Polyurethane Foam From Hemispherical and Bi-Directional Transmittance and Reflectance Measurements
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
, pp.
297
306
.
11.
Hendricks
,
T.
, and
Howell
,
J.
, 1994. “
Inverse Radiative Analysis to Determine Spectral Radiative Properties Using the Discrete Ordinates Method
,”
Proceedings of 10th International Heat Transfer Conference (IHTC10)
, Brighton,
United Kingdom
, Vol.
2
, Hemisphere Pub. Corp., pp.
75
80
.
12.
Baillis
,
D.
, and
Sacadura
,
J. F.
, 2002, “
Identification of Polyurethane Foam Radiative Properties; Influence of Transmittance Measurements Number
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
200
212
.
13.
Argento
,
C.
, and
Bouvard
,
D.
, 1996, “
A Ray Tracing Method for Evaluating the Radiative Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
15
(
39
), pp.
3175
80
.
14.
Yang
,
Y.
,
Howell
,
J.
, and
Klein
,
D.
, 1983, “
Radiative Heat Transfer Through a Randomly Packed Bed of Spheres by the Monte Carlo Method
,”
J. Heat Transfer
,
105
, pp.
325
332
.
15.
Coquard
,
C.
, and
Baillis
,
D.
, 2004, “
Radiative Characteristics of Opaque Spherical Particle Beds: A New Method of Prediction
,”
J. Thermophys. Heat Transfer
,
18
, pp.
178
186
.
16.
Mengüc
,
M.
, and
Subramanian
,
S.
, 1994, “
Solution of the Inverse Radiation Problem for the Homogeneous and Anisotropically Scattering Media Using a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
34
, pp.
253
266
.
17.
Lipinski
,
W.
,
Petrasch
,
J.
, and
Haussener
,
S.
, 2010, “
Application of the Spatial Averaging Theorem to Radiative Heat Transfer in Two-Phase Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
11
, pp.
253
258
.
18.
Lipinski
,
W.
,
Keene
,
D.
,
Haussener
,
S.
, and
Petrasch
,
J.
, 2010, “
Continuum Radiative Heat Transfer Modeling in Media Consisting of Optically Distinct Components in the Limit of Geometrical Optics
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
, pp.
2474
2480
.
19.
Quintard
,
M.
, and
Whitaker
,
S.
, 1994, “
Transport in Ordered and Disordered Porous Media II: Generalized Volume Averaging
,”
Transp. Porous Media
,
14
, pp.
179
206
.
20.
Consalvi
,
J.
,
Porterie
,
B.
, and
Loraud
,
J.
, 2002, “
A Formal Averaging Procedure for Radiation Heat Transfer in Particulate Media
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2755
2768
.
21.
Torquato
,
S.
, and
Lu
,
B.
, 1993, “
Chord Length Distribution for Two-Phase Random Media
,”
Phys. Rev. E
,
47
, pp.
2950
2953
.
22.
Levitz
,
P.
, 1998. “
Off Latice Reconstruction of Porous Media: Critical Evaluation, Geometrical Confinement and Molecular Transport
,”
Adv. Colloid Interface Sci.
,
76–77
, pp.
71
106
.
23.
Tancrez
,
M.
, and
Taine
,
J.
, 2004, “
Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
47
, pp.
373
383
.
24.
Zeghondy
,
B.
,
Iacona
,
E.
, and
Taine
,
J.
, 2006, “
Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI)
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2810
2819
.
25.
Petrasch
,
J.
, 2007, “
Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulated Porous Ceramics
,”
J. Quant. Spectrosc. Radiat. Transf.
,
105
, pp.
180
197
.
26.
Haussener
,
S.
,
Coray
,
P.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2009, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
,
131
, pp.
33
44
.
27.
Haussener
,
S.
,
Lipinski
,
W.
,
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2009. “
Tomographic Characterization of a Semi Transparent-Particle Packed Bed and Determination of Its Thermal Radiative Properties
,”
ASME J. Heat Transfer
,
131
, p.
072701
.
28.
Haussener
,
S.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Analysis of Radiative Transfer in Reacting Packed Beds Undergoing a Solid-Gas Thermochemical Transformation
,”
ASME J. Heat Transfer
,
132
, p.
061201
.
29.
Bellet
,
F.
,
Chalopin
,
E.
,
Fichot
,
F.
,
Iacona
,
E.
, and
Taine
,
J.
, 2009, “
RDFI Determination of Anisotropic and Scattering Dependent Radiative Conductivity Tensors in Porous Media: Application to Rod Bundles
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1544
1551
.
30.
Taine
,
J.
,
Bellet
,
F.
,
Leroy
,
V.
, and
Iacona
,
E.
, 2010, “
Generalized Radiative Transfer Equation for Porous Medium Upscaling; Application to Radiative Fourier Law
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4071
4081
.
31.
Chahlafi
,
M.
, 2011, “
Modélisation du rayonnement thermique dans un coeur de réacteur nucléaire dégradé en présence de vapeur et de gouttes d’eau
,”
Thèse de Doctorat
,
IJHMT
.
32.
Siegel
,
R.
, and
Howell
,
J.
, 2001,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor and Francis
,
Washington
.
33.
Delesse
,
J.
,
Le Saec
,
B.
, and
Vignoles
,
G.
, 2001, “
New Data Structure for the Computation of Equivalent Properties in 3D Porous Media
,”
Proceedings of 6th Symposium on Solid Modelling and Applications
,
K.
Lee
and
D. C.
Anderson
, eds.,
ACM Press
,
New York
, p.
301
.
34.
Zeghondy
,
B.
,
Iacona
,
E.
, and
Taine
,
J.
, 2006, “
Experimental Validation of RDFI Method Predictions of Statistically Anisotropic Porous Medium Radiative Properties
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3701
3707
.
35.
Loretz
,
M.
,
Maire
,
E.
, and
Baillis
,
D.
, 2008, “
Analytical Modelling of the Radiative Properties of Metalic Foams: Contribution of X-Ray Tomography
,”
Adv. Eng. Mater.
,
10
, pp.
352
360
.
36.
Chapman
,
S.
, and
Cowling
,
T.
, 1990,
The Mathematical Theory of Non-uniform Gases
,
Cambridge University Press
,
New York
.
37.
Taine
,
J.
,
Iacona
,
E.
, and
Petit
,
J.-P.
, 2003/2008,
Transferts Thermiques
, 3th ed./4th ed.
SciencesSup. Dunod
,
Paris
.
38.
Gomart
,
H.
, and
Taine
,
J.
, 2011, “
Validity Criterion of the Radiative Fourier Law for an Absorbing and Scattering Medium
,”
Phys. Rev. E
,
83
,
021202
.
39.
Berthet
,
B.
,
Bonnin
,
J.
,
Bayle
,
S.
,
Hanniet
,
N.
,
Jeury
,
F.
,
Gaillot
,
S.
,
Garnier
,
Y.
,
Martin
,
C.
,
Laurie
,
M.
, and
Siri
,
B.
, 1997,
PHEBUS PF FPT1, preliminary report. Document PHEBUS PF IP/97/334
,
IPSN
,
Cadarache, France
, October.
You do not currently have access to this content.