Thermal systems often involve multiple spatial and temporal scales, where transport information from one scale is relevant at others. Optimized thermal design of such systems and their control require approaches for their rapid simulation. These activities are of increasing significance due to the need for energy efficiency in the operation of these systems. Traditional full-field simulation methodologies are typically unable to resolve these scales in a computationally efficient manner. We summarize recent work on simulations of conjugate transport processes over multiple length scales via reduced order modeling through approaches such as compact finite elements and proper orthogonal decomposition. In order to incorporate the influence of length scales beyond those explicitly considered, lumped models are invoked, with appropriate handshaking between the two frameworks. We illustrate the methodology through selected examples, with a focus on information technology systems.

References

1.
Shapiro
,
B.
, 2003, “
Creating Compact Models of Complex Electronic Systems: An Overview and Suggested Use of Existing Model Reduction and Experimental System Identification Tools
,”
IEEE Trans. Compon. Packag. Technol.
,
26
, pp.
165
172
.
2.
Simpson
,
T.
,
Peplinski
,
J.
,
Koch
,
P.
, and
Allen
,
J.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
, pp.
129
150
.
3.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
, pp.
409
423
.
4.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
5.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T.
, 2001, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
,
23
, pp.
1
13
.
6.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
,
125
, pp.
664
672
.
7.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Allen
,
J. K.
, and
Wu
,
C. F. J.
, 2006, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
,
128
, pp.
668
667
.
8.
Qian
,
P. Z. G.
, and
Wu
,
C. F. J.
, 2008, “
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments
,”
Technometrics
,
50
(
2
), pp.
192
204
.
9.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Cambridge,
Great Britain
.
10.
Farge
,
M.
,
Kevlahan
,
N.
,
Perrier
,
V.
, and
Goirand
,
E.
, 1996, “
Wavelets and Turbulence
,”
Proc. IEEE
,
84
(
4
), pp.
639
669
.
11.
Rambo
,
J. D.
, 2006, “
Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
12.
Rolander
,
N.
, 2005, “
An Approach for the Robust Design of Air Cooled Data Center Server Cabinets
,” M.S. thesis, Georgia Institute of Technology, Atlanta.
13.
Rambo
,
J.
, and
Joshi
,
Y.
, 2007, “
Reduced-Order Modeling of Turbulent Forced Convection With Parametric Conditions
,”
Int. J. Heat Mass Transfer
,
50
(
3-4
), pp.
539
551
.
14.
Treichel
,
H.
, 2001, “
Low Dielectric Constant Materials
,”
J. Electron. Mater.
,
30
, pp.
290
298
.
15.
Ho
,
P. S.
, and
Kwok
,
T.
, 1988, “
Electromigration in Metals
,”
Rep. Prog. Phys.
,
52
, pp.
301
348
.
16.
Gurrum
,
S.
,
Joshi
,
Y.
,
King
,
W.
,
Ramakrishna
,
K.
, and
Gall
,
M.
, 2008, “
A Compact Approach to on-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method
,”
ASME J. Electron. Packag.
,
130
, p.
031001
.
17.
Gurrum
,
S.
,
Joshi
,
Y.
,
King
,
W. P.
, and
Ramakrishna
,
K.
, 2004, “
Numerical Simulation of Electron Transport Through Constriction in a Metallic Thin Film
,”
IEEE Electron Device Lett.
,
25
, pp.
696
698
.
18.
Gurrum
,
S.
,
King
,
W.
,
Joshi
,
Y.
, and
Ramakrishna
,
K.
, 2008, “
Size Effect on the Thermal Conductivity of Thin Metallic Films Investigated by Scanning Joule Expansion Microscopy (SJEM)
,”
ASME J. Heat Transfer
,
130
,
082403
.
19.
Gurrum
,
S.
,
King
,
W. P.
, and
Joshi
,
Y. K.
, 2008, “
A Semi-Analytical Solution for the 3ω Method Including the Effect of Heater Thermal Conduction
,”
J. Appl. Phys.
,
103
, p.
113517
.
20.
Bar-Cohen
,
A.
,
Elperin
,
T.
, and
Eliasi
,
R.
, 1989, “
θjc Characterization of Chip Packages—Justification, Limitations, and Future
,”
IEEE Trans. Compon., Hybrid, Manuf. Technol.
,
12
, pp.
724
731
.
21.
Rosten
,
H. I.
,
Lasance
,
C. J. M.
, and
Parry
,
J. D.
, 1997, “
The World of Thermal Characterization According to DELPHI—Part I: Background to DELPHI
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part A
,
20
, pp.
384
439
.
22.
Boyalakuntla
,
D. S.
, and
Murthy
,
J. Y.
, 2002, “
Hierarchical Compact Models for Simulation of Electronic Chip Packages
,”
IEEE Trans. Compon. Packag. Technol.
,
25
, pp.
192
203
.
23.
Adams
,
V. H.
,
Joshi
,
Y.
, and
Blackburn
,
D. L.
, 1997, “
Application of Compact Model Methodologies to Natural Convection Cooling of an Array of Electronic Packages in a Low Profile Enclosure
,”
Advances in Electronic Packaging 1997
,
E.
Suhir
, M. Shiratori, Y.-C. Lee, and G. Subbarayan, eds., ASME, New York, Vol. 2, pp.
1967
1974
.
24.
Sabry
,
M.-N.
, 2004, “
Higher Order Compact Thermal Models
,”
Proceedings of the 10th International Workshop on Thermal Investigations of ICs and Systems
(
THERMINIC
), Sophia Antipolis, Côte d’Azur, France, pp.
273
280
,
Pub. TIMA Laboratory
.
25.
Ramakrishna
,
K.
,
Gall
,
M.
,
Justison
,
P.
, and
Kawasaki
,
H.
, 2004, “
Prediction of Maximum Allowed RMS Currents for Electromigration Design Guidelines
,”
Proceedings of the 7th International Workshop on Stress-Induced Phenomena in Metallization
,
P. S.
Ho
,
S. P.
Baker
,
T.
Nakamura
, and
C. A.
Volkert
, eds., AIP Conference Proceedings, Melville, NY, Vol.
741
, pp.
156
164
.
26.
Tang
,
L.
, and
Joshi
,
Y.
, 2005, “
A Multi-Grid Based Multi-Scale Thermal Analysis Approach for Combined Mixed Convection, Conduction and Radiation Due to Discrete Heating
,”
ASME Trans. J. Heat Transfer
,
127
, pp.
18
26
.
27.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
28.
Tang
,
L.
, 1998,
A Multi-Scale Conjugate Thermal Analysis Methodology for Convectively Cooled Electronic Enclosures
, Ph.D. dissertation, University of Maryland, MA.
29.
Ravindran
,
S. S.
, 2002, “
Adaptive Reduced-Order Controllers for a Thermal Flow Using Proper Orthogonal Decomposition
,”
SIAM J. Sci. Comput.
,
23
(
6
), pp.
1924
1942
.
30.
Park
,
H. M.
, and
Cho
,
D. H.
, 1996, “
The Use of the Karhunen-Loeve Decomposition for the Modeling of Distributed Parameter Systems
,”
Chem. Eng. Sci.
,
51
(
1
), pp.
81
98
.
31.
Park
,
H. M.
, and
Cho
,
D. H.
, 1996, “
Low Dimensional Modeling of Flow Reactors
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3311
3323
.
32.
Sirovich
,
L.
, and
Park
,
H. M
, 1990, “
Turbulent Thermal Convection in a Finite Domain: Part I. Theory
,”
Phys. Fluids
,
2
(
9
), pp.
1649
1657
.
33.
Sirovich
,
L.
, and
Park
,
H. M.
, 1990, “
Turbulent Thermal Convection in a Finite Domain: Part II. Numerical Results
,”
Phys. Fluids
,
2
(
9
), pp.
1649
1657
.
34.
Tarman
,
I. H.
, and
Sirovich
,
L.
, 1998, “
Extensions of Karhunen-Loeve Based Approximations of Complicated Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
155
, pp.
359
368
.
35.
Park
,
H. M.
, and
Li
,
W. J.
, 2002, “
Boundary Optimal Control of Natural Convection by Means of Mode Reduction
,”
ASME J. Dyn. Syst., Meas., Control
,
124
, pp.
47
54
.
36.
Ding
,
P.
,
Wu
,
X.-H.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
, 2008, “
A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems
,”
ASME J. Heat Transfer
,
130
(
3
), p.
032502
.
37.
Ly
,
H. V.
, and
Tran
,
H. T.
, 2001, “
Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition
,”
Math. Comput. Modell.
,
33
, pp.
223
236
.
38.
Strang
,
G.
, 1988,
Linear Algebra and its Applications
,
Thomson Learning
(currently Cengage Learning), Florence, KY
.
39.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
,
Mistree
,
F.
, and
Allen
,
J. K.
, 2006, “
Robust Design of Turbulent Convective Systems Using the Proper Orthogonal Decomposition
,”
ASME J. Mech. Des.
,
128
, pp.
844
855
.
40.
Nie
,
Q.
, and
Joshi
,
Y.
, 2008, “
Multiscale Thermal Modeling Methodology for Thermoelectrically Cooled Electronic Cabinets
,”
Numer. Heat Transfer, Part A
,
53
(
3
), pp.
225
248
.
41.
Nie
,
Q.
, and
Joshi
,
Y.
, 2008, “
Reduced Order Modeling and Experimental Validation of Steady Turbulent Convection in Connected Domains
,”
Int. J. Heat Mass Transfer
,
51
(
25-26
), pp.
6063
6076
.
42.
Kowalski
,
T.
, and
Radmehr
,
A.
, 2000, “
Thermal Analysis of an Electronics Enclosure: Coupling Flow Network Modeling (FNM) and Computational Fluid Dynamics (CFD)
,”
IEEE 16th Semiconductor Thermal (FNM) and Computational Fluid Dynamics (CFD), IEEE 16th Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, pp.
60
67
.
43.
Belady
,
C.
,
Kelkar
,
K. M.
, and
Patankar
,
S. V.
, 1995, “
Improving Productivity in Electronic Packaging With Flow Network Modeling (FNM)
,”
Electron. Cooling
,
5
(
1
), pp.
36
40
.
44.
Lian
,
B.
,
Dishongh
,
T.
,
Pullen
,
D.
,
Yan
,
H.
, and
Chen
,
J.
, 2000, “
Flow Network Modeling for Improving Flow Distribution of Microelectronics Burn-in-Oven
,”
The 7th Intersociety Conference on Thermal and Mechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, pp.
81
91
.
45.
Samadiani
,
E.
, and
Joshi
,
Y.
, 2010, “
Multi-Parameter Model Reduction in Multi-Scale Convective Systems
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2193
2205
.
46.
Samadiani
,
E.
, and
Joshi
,
Y.
, 2010, “
Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers
,”
ASME J. Heat Transfer
,
132
, p.
071402
.
47.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2006, “
An Approach for Robust Design of Turbulent Convective Systems
,”
ASME J. Mech. Des.
,
128
, pp.
844
855
.
48.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
, pp.
478
485
.
49.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
, 1993, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
AIAA Structural Optimization: Status and Promise
,
M. P.
Kamat
, ed.,
AIAA
,
Washington, DC
, pp.
247
286
.
50.
Samadiani
,
E.
,
Joshi
,
Y.
,
Allen
,
J. K.
,
Mistree
,
F.
, 2010, “
Adaptable Robust Design of Multi-Scale Convective Systems Applied to Energy Efficient Data Centers
,”
Numer. Heat Transfer, Part A
,
57
, pp.
69
100
.
51.
Crippen
,
M. J.
,
Alo
,
R. K.
,
Champion
,
D.
,
Clemo
,
R. M.
,
Grosser
,
C. M.
,
Gruendler
,
N. J.
,
Mansuria
,
M. S.
,
Matteson
,
J. A.
,
Miller
,
M. S.
, and
Trumbo
,
B. A.
, 2005, “
BladeCenter Packaging, Power, and Cooling
,”
IBM J. Res. Dev.
,
49
(
6
), pp.
887
904
.
52.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
, 2004, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
Intersociety Conference on Thermal Phenomena
, IEEE, pp.
593
600
.
53.
ASHRAE, 2004, Thermal Guidelines for Data Processing Environments, American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Atlanta, GA.
54.
Colclasure
,
A. M.
,
Sanandaji
,
B. M.
,
Vincent
,
T. L.
, and
Kee
,
R. J.
, 2011,
Modeling and Control of Tubular Solid-Oxide Fuel Cell Systems. I: Physical Models and Linear Model Reduction
,
J. Power Sources
,
196
, pp.
196
207
.
55.
Cai
,
L.
, and
White
,
R. E.
, 2010, “
An Efficient Electrochemical–Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1188
A1195
.
56.
Schmidt
,
F.
,
Pirc
,
N.
,
Mongeau
,
M.
, and
Chinesta
,
F.
, 2011, “
Efficient Mold Cooling Optimization by Using Model Reduction
,”
Int. J. Mater. Form
,
4
, pp.
73
82
.
57.
Lang
,
Y.
,
Malacin
,
A.
,
Biegler
,
L. T.
,
Munteanu
,
S.
,
Madsen
,
J. I.
, and
Zitney
,
S. E.
, 2009, “
Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization
,”
Energy Fuels
,
23
, pp.
1695
1706
.
58.
Gao
,
Y.
,
Roux
,
J. J.
,
Zhao
,
L. H.
, and
Jiang
,
Y.
, 2008, “
Dynamical Building Simulation: A Low Order Model for Thermal Bridges Losses
,”
Energy Build.
,
40
, pp.
2236
2243
.
You do not currently have access to this content.