This paper reports some important results obtained from a series of microgravity experiments on the Marangoni convection that takes place in liquid bridges. This project, called Marangoni Experiment in Space (MEIS), started from August 22, 2008 as the first science experiment on the Japanese Experimental Module “KIBO” at the ISS. Two series of experiments, MEIS-1 and 2, were conducted in 2008 and 2009, respectively. The experimental methods used are explained in some detail. The maximum size of the liquid bridge that could be realized during these experiments was 30 mm in diameter and 60 mm in length, giving an aspect ratio of 2.0. The results are obtained for a wide range of aspect ratios of the liquid bridges, including the values that cannot be reached in 1 g experiments, and therefore, they provide indispensable amount of data for the study of instability mechanisms of the Marangoni convection.

References

1.
Cröll
,
A.
,
Kaiser
,
Th.
,
Schweizer
,
M.
,
Danilewsky
,
A. N.
,
Lauer
,
S.
,
Tegetmeier
,
A.
, and
Benz
,
K. W.
, 1998, “
Floating-Zone and Floating-Solution-Zone Growth of GaSb Under Microgravity
,”
J. Cryst. Growth
,
191
, pp.
365
376
.
2.
Schwabe
,
D.
, and
Scharmann
,
A.
, 1979, “
Some Evidence for the Existence and Magnitude of a Critical Marangoni Number for the Onset of Oscillatory Flow in Crystal Growth Melts
,”
J. Cryst. Growth
,
46
, pp.
125
131
.
3.
Nakamura
,
S.
,
Hibiya
,
T.
,
Kakimoto
,
K.
,
Imaishi
,
N.
,
Nishizawa
,
S.
,
Hirata
,
A.
,
Mukai
,
K.
,
Yoda
,
S.
, and
Morita
,
T.
, 1998, “
Temperature Fluctuations of the Marangoni Flow in a Liquid Bridge of Molten Silicon Under Microgravity on Board the TR-IA-4 Rocket
,”
J. Cryst. Growth
,
186
(
1–2
), pp.
85
94
.
4.
Ostrach
,
S.
, 1983, “
Fluid Mechanics in Crystal Growth—The 1982 Freeman Scholar Lecture
,”
Trans. ASME J. Fluids Eng.
,
105
, pp.
5
20
.
5.
Kuhlmann
,
H. C.
, 1999, “
Thermocapillary Convection in Models of Crystal Growth
,”
Springer Tracts in Modern Physics
, Vol.
152
,
Springer-Verlag
Berlin/Heidelberg
.
6.
Kawamura
,
H.
, and
Ueno
,
I.
, 2006, “
Review on Thermocapillary Convection in a Half-Zone Liquid Bridge With High Pr Fluid: Onset of Oscillatory Convection, Transition of Flow Regimes, and Particle Accumulation Structure, in Surface Tension-Driven Flows and Applications
,”
Savino
,
R.
, ed., Research Signpost, pp.
1
24
.
7.
Simic-Stefani
,
S.
,
Kawaji
,
M.
, and
Yoda
,
S.
, 2006, “
Onset of Oscillatory Thermocapillary Convection in Acetone Liquid Bridges: The Effect of Evaporation
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3167
3179
.
8.
Schwabe
,
D.
,
Mizev
,
A. I.
,
Udhayasankar
,
M.
, and
Tanaka
,
S.
, 2007, “
Formation of Dynamic Particle Accumulation Structures in Oscillatory Thermocapillary Flow in Liquid Bridges
,”
Phys. Fluids
,
19
, p.
072102
.
9.
Teng
,
Y.-Y.
,
Chen
,
J.-C.
,
Lu
,
C.-W.
, and
Chen
,
C.-Y.
, 2010, “
The Carbon Distribution in Multicrystalline Silicon Ingots Grown Using the Directional Solidification Process
,”
J. Cryst. Growth
,
312
, pp.
1282
1290
.
10.
Takagi
,
K.
,
Otaka
,
M.
,
Natsui
,
H.
,
Arai
,
T.
,
Yoda
,
S.
,
Yuan
,
Z.
,
Mukai
,
K.
,
Yasuhiro
,
S.
, and
Imaishi
,
N.
, 2001, “
Experimental Study on Transition to Oscillatory Thermocapillary Flow in a Low Prandtl Number Liquid Bridge
,”
J. Cryst. Growth
,
233
, pp.
399
407
.
11.
Yang
,
Y. K.
, and
Kou
,
S.
, 2001, “
Temperature Oscillation in a Tin Liquid Bridge and Critical Marangoni Number Dependency on Prandtl Number
,”
J. Cryst. Growth
,
222
, pp.
153
143
.
12.
Chun
,
C.-H.
, and
Wuest
,
W.
, 1982, “
Thermal Marangoni Convection in a Floating Zone—μg Experiment During the TEXUS IIIb Rocket Flight
,”
Zeitschrift für Flugwissenschaften und Weltraumforschung
,
6
(
5
), pp.
316
325
.
13.
Schwabe
,
D.
, and
Scharmann
,
A.
, 1983, “
Measurement of the Critical Marangoni Number in a Floating Zone Under Reduced Gravity
,”
Proceedings of 4th European Symposium Materials Science Under Microgravity (ESA SP-191)
, pp.
213
218
.
14.
Schwabe
,
D.
, and
Scharmann
,
A.
, 1985, “
Measurement of the Critical Marangoni Number for Transition From Stationary to Oscillatory Thermocapillarity Under Microgravity Conditions—Results of Experiments in TEXUS 5 and TEXUS 8 Ballistic Rockets
,”
Zeitschrift für Flugwissenschaften und Weltraumforschung
,
9
(
1
), pp.
21
28
.
15.
Chun
,
C.-H.
, 1984, “
Verification of Turbulence Developing From the Oscillatory Marangoni Convection in a Liquid Column
,”
Proceedings of 5th European Symposium on Materials Science Under Microgravity—Results of Spacelab-1 (ESA-SP-222)
, pp.
271
280
.
16.
Napolitano
,
L. G.
,
Monti
,
R.
, and
Russo
,
G.
, 1985, “
Marangoni Convection in Low Gravity—Experiment 1ES 328
,”
Earth Oriented Appl. Space Technol.
,
5
(
1–2
), pp.
69
82
.
17.
Monti
,
R.
,
Fortezza
,
R.
, and
Mannara
,
C.
, 1988, “
Results of the TEXUS 14-B Flights Experiment on a Floating Zone. First Approach Towards Telescience in Fluid Science
,”
Acta Astronaut.
,
17
(
11–12
), pp.
1221
1228
.
18.
Cröll
,
A.
,
Müller-Sebert
,
W.
, and
Nitsche
,
R.
, 1989, “
The Critical Marangoni Number for the Onset of Time-Dependent Convection in Silicon
,”
Mater. Res. Bull.
,
24
, pp.
995
1004
.
19.
Monti
,
R.
, and
Fortezza
,
R.
, 1990, “
Teletexus Experiment. Preliminary Experience for the Columbus Programme
,”
Space Technol.
,
10
(
1–2
), pp.
127
134
.
20.
Ohnishi
,
M.
,
Yoshihara
,
S.
,
Azuma
,
H.
,
Yoda
,
S.
, and
Kawasaki
,
K.
, 1992, “
Marangoni Convection in a Liquid Column Under Microgravity Experiment Using TR-IA Sounding Rocket and Computer Simulation
,”
J. Jpn. Soc. Microgravity Appl.
,
10
(
1
), pp.
8
14
.
21.
Hirata
,
A.
,
Nishizawa
,
S.
,
Imaishi
,
N.
,
Yasuhiro
,
S.
,
Yoda
,
S.
, and
Kawasaki
,
K.
, 1993, “
Oscillatory Marangoni Convection in a Liquid Bridge Under Microgravity by Utilizing TR-IA Sounding Rocket
,”
J. Jpn. Soc. Microgravity Appl.
,
10
(
4
), pp.
241
250
.
22.
Albanese
,
C.
,
Carotenuto
,
L.
,
Castagnolo
,
D.
,
Ceglia
,
E.
, and
Monti
,
R.
, 1995, “
An Investigation on the Onset of Oscillatory Marangoni Flow
,”
Adv. Space Res.
,
16
(
7
), pp.
87
94
.
23.
Carotenuto
,
L.
,
Castagnolo
,
D.
,
Albanese
,
C.
and
Monti
,
R.
, 1998, “
Instability of Thermocapillary Convection in Liquid Bridges
,”
Phys. Fluids
,
10
(
3
), pp.
555
565
.
24.
Cröll
,
A.
,
Tegetmeier
,
A.
,
Nagel
,
G.
, and
Benz
,
K. W.
, 1994, “
Floating-Zone Growth of GaAs Under Microgravity During the D2-Mission
,”
Cryst. Res. Technol.
,
29
(
3
), pp.
335
342
.
25.
Haga
,
M.
,
Maekawa
,
T.
,
Kuwahara
,
K.
,
Ohara
,
A.
,
Kawasaki
,
K.
,
Harada
,
T.
,
Yoda
,
S.
, and
Nakamura
,
T.
, 1995, “
Effect of Electric Field on Marangoni Convection Under Microgravity
,”
J. Jpn. Soc. Microgravity Appl.
,
12
(
1
), pp.
19
26
.
26.
Kawamura
,
H.
,
Saita
,
K.
,
Nishino
,
K.
,
Yamamoto
,
M.
,
Yoda
,
S.
,
Nakamura
,
T.
,
Morita
,
T. S.
,
Kawasaki
,
K.
, and
Tamaoki
,
H.
, 1997, “
Three-Dimensional Measurement of Marangoni Convection in a Liquid Bridge Under Microgravity Conditions in the TR-IA-4 Sounding Rocket
,”
J. Jpn. Soc. Microgravity Appl.
,
14
(
1
), pp.
34
41
.
27.
Cröll
,
A.
,
Schweizer
,
M.
,
Tegetmeier
,
A.
, and
Benz
,
K. W.
, 1996, “
Floating-None Growth of GaAs
,”
J. Cryst. Growth
,
166
, pp.
239
244
.
28.
Nishino
,
K.
,
Kawamura
,
H.
,
Emori
,
T.
,
Iijima
,
Y.
,
Kawasaki
,
K.
,
Makino
,
K.
,
Yoda
,
S.
, and
Kawasaki
,
H.
, 1998, “
Simultaneous Observation of Three-Dimensional Flow and Surface Temperature of Unsteady Marangoni Convection in a Liquid Bridge (in Japanese)
,”
J. Jpn. Soc. Microgravity Appl.
,
15
(
3
), pp.
158
164
.
29.
Schwabe
,
D.
, 2005, “
Hydrothermal Waves in a Liquid Bridge With Aspect Ratio Near the Rayleigh Limit Under Microgravity
,”
Phys. Fluids
,
17
, p.
112104
.
30.
Schwabe
,
D.
,
Tanaka
,
S.
,
Mizev
,
A.
, and
Kawamura
,
H.
, 2006, “
Particle Accumulation Structures in Timedependent Thermocapillary Flow in a Liquid Bridge Under Microgravity
,”
Microgravity Sci. Technol.
,
18
(
3–4
), pp.
117
127
.
31.
Kawamura
,
H.
,
Ueno
,
I.
, and
Ishikawa
,
T.
, 2002, “
Study of Thermocapillary Flow in a Liquid Bridge Towards an On-Orbit Experiment Aboard the ISS
,”
Adv. Space Res.
,
29
, pp.
611
618
.
32.
Tanaka
,
S.
,
Ueno
,
I.
,
Kawamura
,
H.
, and
Schwabe
,
D.
, 2006, “
Flow Structure and Dynamic Particle Accumulation in Thermocapillary Convection in a Liquid Bridge
,”
Phys. Fluids
,
18
, p.
067103
.
33.
Ueno
,
I.
,
Abe
,
Y.
Noguchi
,
K.
, and
Kawamura
,
H.
, 2008, “
Dynamic Particle Accumulation Structure (PAS) in Half-Zone Liquid Bridge—Reconstruction of Particle Motion by 3-D PTV -
,”
Adv. Space Res.
,
41
, pp.
2145
2149
.
34.
Nishino
,
K.
,
Kasagi
,
N.
, and
Hirata
,
M.
, 1989, “
Three Dimensional Particle Tracking Velocimetry Based on Automated Digital Image Processing
,”
Trans. ASME J. Fluids Eng.
,
111
, pp.
384
391
.
35.
Nishino
,
K.
,
Yamawaki
,
T.
, and
Takami
,
M.
, 1995, “
Three-Dimensional Flow Visualization and Measurement of Suspended Liquid Bridge
,”
J. Jpn. Soc. Microgravity Appl.
,
12
(
4
), pp.
205
213
.
36.
Nishimura
,
M.
,
Ueno
,
I.
,
Nishino
,
K.
, and
Kawamura
,
H.
, 2005, “
3-D PTV Measurement of Oscillatory Thermocapillary Convection in Half-Zone Liquid Bridge
,”
Exp. Fluids
,
38
, pp.
285
290
.
37.
Kawaji
,
M.
,
Ahmad
,
W.
,
DeJesus
,
J. M.
,
Sutharshan
,
B.
,
Lorencez
,
C.
, and
Ojha
,
M.
, 1993, “
Flow Visualization of Two-Phase Flows Using Photochromic Dye Activation Method
,”
Nucl. Eng. Des.
,
141
, pp.
343
355
.
38.
Shin-Etsu
, 2004,
Silicone Fluid KF-98
“Performance Test Results” (in Japanese),
Chemical Co. Ltd.
,pp.
6
9
, http://www.silicone.jp/j/catalog/index.shtml#1.
39.
Ermakov
,
M.
, 2010, private communication.
40.
Masud
,
J.
,
Kamotani
,
Y.
, and
Ostrach
,
S.
, 1997, “
Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prandtl Number Fluids
,”
J. Thermophys. Heat Transfer
,
11
(
1
), pp.
105
111
.
41.
Ueno
,
I.
,
Tanaka
,
S.
, and
Kawamura
,
H.
, 2003, “
Oscillatory and Chaotic Thermocapillary Convection in a Half-Zone Liquid Bridge
,”
Phys. Fluids
,
15
, pp.
408
416
.
42.
Ueno
,
I.
,
Tanaka
,
S.
, and
Kawamura
,
H.
, 2003b, “
Various Flow Patterns in Thermocapillary Convection in Half-Zone Liquid Bridge of High Prandtl Number Fluid
,”
Adv. Space Res.
,
32
, pp.
143
148
.
43.
Preisser
,
F.
,
Schwabe
,
D.
, and
Scharmann
,
A.
, 1983, “
Steady and Oscillatory Thermocapillary Convection in Liquid Columns With Free Cylindrical Surface
,”
J. Fluid Mech.
,
126
, pp.
545
567
.
44.
Xu
,
J. J.
, and
Davis
,
S. H.
, 1984, “
Convective Thermocapillary Instabilities in Liquid Bridges
,”
Phys. Fluids
,
27
, pp.
1102
1107
.
You do not currently have access to this content.