Entropy generation in a velocity and temperature field is shown to be very significant in momentum and heat transfer problems. After the determination of this postprocessing quantity, many details about the physics of a problem are available. This second law analysis (SLA) is a tool for conceptual considerations, for the determination of losses, both in the velocity and the temperature field, and it helps to assess complex convective heat transfer processes. These three aspects in conjunction with entropy generation are discussed in detail and illustrated by several examples.

References

1.
Moran
,
H.
, and
Shapiro
,
H.
, 2003,
Fundamentals of Engineering Thermodynamics
, 5th ed.,
John Wiley & Sons
,
New York
.
2.
Baehr
,
H.
, and
Kabelac
,
S.
, 2009,
Thermodynamik
, 14th ed.,
Springer-Verlag
,
Berlin
.
3.
Herwig
,
H.
, and
Kautz
,
C.
, 2007,
Technische Thermodynamik
,
Pearson Studium
,
München
.
4.
Incropera
,
F.
,
DeWitt
,
D.
,
Bergmann
,
T.
, and
Lavine
,
A.
, 2006,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons
,
New York
.
5.
Nellis
,
G.
, and
Klein
,
S.
, 2009,
Heat Transfer
,
Cambridge University Press
,
Cambridge, United Kingdom
.
6.
Dugdale
,
J.
, 1996,
Entropy and its Physical Meaning
,
Taylor & Francis
,
London
.
7.
Atkins
,
P.
, 1984,
The Second Law
,
Scientific American Books—W.H. Freeman and Company
,
New York
.
8.
Goldstein
,
M.
, and
Goldstein
,
I.
, 1993,
The Refrigerator and the Universe
,
Harvard University Press
,
Cambridge, MA
.
9.
Falk
,
G.
, and
Ruppel
,
W.
, 1976
, Energie und Entropie
,
Springer-Verlag
,
Berlin
.
10.
Lieb
,
E.
, and
Yngvason
,
J.
, 2000, “
A Fresh Look at Entropy and the Second Law of Thermodynamics
,”
Phys. Today
,
11
, p.
106
.
11.
Beretta
,
G.
,
Ghoniem
,
A.
, and
Hatsopoulos
,
G.
, eds., 2008, “
Meeting the Entropy Challenge
,”
AIP Conference Proceedings
, Vol.
1033
.
12.
Bejan
,
A.
, 1977, “
The Concept of Irreversibility in Heat Exchanger Design: Counter-Flow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Transfer
,
99
, pp.
274
380
.
13.
Sekulic
,
D.
, 1986, “
Entropy Generation in a Heat Exchanger
,”
Heat Transfer Eng.
,
7
, pp.
83
88
.
14.
Gaggioli
,
R.
, 1983, “
Second Law Analysis for Process and Energy Engineering
,”
Efficiency and Costing, Second Laws Analysis of Processes
,
American Chemical Society
,
Washington, DC
.
15.
Bejan
,
A.
, 1979, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
, pp.
718
725
.
16.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
John Wiley & Sons
,
New York
.
17.
Bejan
,
A.
, 1996,
Entropy Generation Minimization
,
CRC
,
Boca Raton, FL
.
18.
Hesselgreaves
,
J.
, 2000, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
J. Heat Mass Transfer
,
43
, pp.
4189
4204
.
19.
Herwig
,
H.
, and
Kock
,
F.
, 2007, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
, pp.
207
215
.
20.
Anand
,
D.
, 1984, “
Second Law Analysis of Solar Powered Absorption Cooling Cycles and Systems
,”
J. Sol. Energy Eng.
,
106
, pp.
291
298
.
21.
Nuwayhid
,
R.
,
Moukalled
,
F.
, and
Noueihed
,
N.
, 2000, “
On Entropy Generation in Thermoelectric Devices
,”
Energy Convers. Manage.
,
41
, pp.
891
914
.
22.
Assad
,
E.
, 2000, “
Thermodynamic Analysis of an Irreversible MHD Power Plant
,”
Int. J. Energy Res.
,
24
, pp.
865
875
.
23.
Shiba
,
T.
, and
Bejan
,
A.
, 2001, “
Thermodynamic Optimization of Geometric Structure in the Counterflow Heat Exchanger for an Environmental Control System
,”
Energy
,
26
, pp.
493
511
.
24.
Saidi
,
M.
, and
Yazdi
,
M.
, 1999, “
Exergy Model of A Vortex Tube System With Experimental Results
,”
Energy
,
24
, pp.
625
632
.
25.
Ko
,
T.
, and
Ting
,
K.
, 2006, “
Entropy Generation and Optimal Analysis for Laminar Forced Convection in Curved Rectangular Ducts: A Numerical Study
,”
Int. J. Therm. Sci.
,
45
, pp.
138
150
.
26.
San
,
J.
, and
Jan
,
C.
, 2000, “
Second Law Analysis of a Wet Crossflow Heat Exchanger
,”
Energy
,
25
, pp.
939
955
.
27.
Johannessen
,
E.
,
Nummedal
,
L.
, and
Kjelstrup
,
S.
, 2002, “
Minimizing the Entropy Production in Heat Exchange
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2649
2654
.
28.
Vargas
,
J.
, and
Bejan
,
A.
, 2001, “
Thermodynamic Optimization of Finned Crossflow Heat Exchangers for Aircraft Environmental Control Systems
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
657
665
.
29.
Zimparov
,
V.
, 2000, “
Extended Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces: Heat Transfer Through Ducts With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3137
3155
.
30.
Mahulikar
,
S.
, and
Herwig
,
H.
, 2004, “
Conceptual Investigation of the Entropy Principle for Identification of Directives for Creation, Existence and Total Destruction of Order
,”
Phys. Scr.
,
7
, pp.
212
221
.
31.
Mahulikar
,
S.
, and
Herwig
,
H.
, 2009, “
Exact Thermodynamic Principles for Dynamic Order Existence and Evolution in Chaos
,”
Chaos, Solitons Fractals
,
41
, pp.
1939
1948
.
32.
Spurk
,
J. H.
, and
Aksel
,
N.
, 2008,
Fluid Mechanics
, 2nd ed.,
Springer-Verlag
,
Berlin
.
33.
Kock
,
F.
, and
Herwig
,
H.
, 2004, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2205
2215
.
34.
Moody
,
L.
, 1944, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
684
.
35.
Herwig
,
H.
,
Gloss
,
D.
, and
Wenterodt
,
T.
, 2008, “
A New Approach to Understanding and Modelling the Influence of Wall Roughness on Friction Factors for Pipe and Channel Flows
,”
J. Fluid Mech.
,
613
, pp.
35
53
.
36.
Herwig
,
H.
,
Schmandt
,
B.
, and
Uth
,
M.-F.
, 2010, “
Loss Coefficients in Laminar Flows: Indispensible for the Design of Microflow Systems
,”
Proceedings of ICNMM2010
, Paper No. ICNMM2010-30166.
37.
Gloss
,
D.
, and
Herwig
,
H.
, 2010, “
Wall Roughness Effects in Laminar Flows: An Often Ignored Though Significant Issue
,”
Exp. Fluids
,
49
, pp.
461
470
.
38.
Nikuradse
,
J.
, 1933, “
Strömungsgesetze in rauhen Rohren
,” Vol.
361
,
Forschungsheft
,
VDI-Verlag
,
Düsseldorf
.
39.
Schiller
,
L.
, 1923, “
Über den Strömungswiderstand von Rohren verschiedenen Querschnitts- und Rauhigkeitsgrades
,”
ZAMM
,
3
, pp.
2
13
.
40.
Kiš
,
P.
, and
Herwig
,
H.
, “
Entropy Production in Turbulent Convection: An Analysis Based on Direct Numerical Simulation of a Plane Channel Flow
,”
Proceedings of the Sixth International Symposium on Heat and Mass Transfer
.
41.
Kiš
,
P.
, and
Herwig
,
H.
, 2010, “
A Second Law Analysis of Mixed Convection in a Plane Channel Based on DNS Results
,”
Proceedings of IHTC14
, Paper No. IHTC14-22619.
42.
Gee
,
D.
, and
Webb
,
R.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat and Mass Transfer
,
23
, pp.
1127
1136
.
43.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,”
Proceedings of ICNMM2006
, Paper No. 96227.
44.
Colebrook
,
C.
, 1939, “
Turbulent Flow in Pipes With Particular Reference to the Transition Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civil Eng. London
,
11
, pp.
133
142
.
45.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
You do not currently have access to this content.