Over the last several decades, several factors have contributed to a major transformation in heat pipe science and technology applications. The first major contribution was the development and advances of new heat pipes, such as loop heat pipes (LHPs), micro and miniature heat pipes, and pulsating heat pipes (PHPs). In addition, there are now many commercial applications that have helped contribute to the recent interest in heat pipes. For example, several million heat pipes are manufactured each month for applications in CPU cooling and laptop computers. Numerical modeling, analysis, and experimental simulation of heat pipes have significantly progressed due to a much greater understanding of various physical phenomena in heat pipes as well as advances in computational and experimental methodologies. A review is presented hereafter concerning the types of heat pipes, heat pipe analysis, and simulations.

References

References
1.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
, 1st ed.,
Taylor & Francis
,
Washington, DC
.
2.
Zuo
,
Z. J.
, and
Faghri
,
A.
,
1998
,
“A Network Thermodynamic Analysis of the Heat Pipe,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1473
1484
.10.1016/S0017-9310(97)00220-2
3.
Khalkhali
,
H.
,
Faghri
,
A.
, and
Zuo
,
Z. J.
,
1999
,
“Entropy Generation in a Heat Pipe System,”
Appl. Therm. Eng.
,
19
(
10
), pp.
1027
1043
.10.1016/S1359-4311(98)00089-1
4.
Vasiliev
,
L. L.
,
2005
,
“Heat Pipes in Modern Heat Exchangers,”
Appl. Therm. Eng.
,
25
(
1
), pp.
1
19
.10.1016/j.applthermaleng.2003.12.004
5.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
,
2011
,
“A Review of Heat Pipe Application Including New Opportunities,”
Front. Heat Pipes
,
2
, p.
013001
.10.5098/fhp.v2.1.3001
6.
Faghri
,
A.
,
Chen
,
M. M.
, and
Morgan
,
M.
,
1989
,
“Heat Transfer Characteristics in Two-Phase Closed Conventional and Concentric Annular Thermosyphons,”
ASME J. Heat Transfer
,
111
(
3
), pp.
611
618
.10.1115/1.3250726
7.
Faghri
,
A.
, and
Thomas
,
S.
,
1989
,
“Performance Characteristics of a Concentric Annular Heat Pipe: Part I—Experimental Prediction and Analysis of the Capillary Limit,”
ASME J. Heat Transfer
,
111
(
4
), pp.
844
850
.10.1115/1.3250795
8.
Faghri
,
A.
,
1989
,
“Performance Characteristics of a Concentric Annular Heat Pipe: Part II—Vapor Flow Analysis,”
ASME J. Heat Transfer
,
111
(
4
), pp.
851
857
.10.1115/1.3250796
9.
Mochizuki
,
M.
,
Saito
,
Y.
,
Kiyooka
,
F.
, and
Nguyen
,
T.
,
2006
, “
High Power Cooling Chips by Heat Pipes and Advanced Heat Spreader
,”
8th International Heat Pipe Symposium
,
Kumamoto, Japan
, pp.
214
221
.
10.
Mochizuki
,
M.
,
Saito
,
Y.
,
Kiyooka
,
F.
,
Nguyen
,
T.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
,
2007
, “
Advanced Micro-Channel Vapor Chamber for Cooling High Power Processors
,” Proceedings of the
ASME
InterPack Conference (InterPACK2007),
Vancouver, Canada
, pp.
695
702
.10.1115/IPACK2007-33611
11.
Xiao
,
B.
, and
Faghri
,
A.
,
2008
,
“A Three-Dimensional Thermal-Fluid Analysis of Flat Heat Pipes,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3113
3126
.10.1016/j.ijheatmasstransfer.2007.08.023
12.
Gray
,
V. H.
,
1969
, “
The Rotating Heat Pipe—A Wickless, Hollow Shaft for Transferring High Heat Fluxes
,”
Proceedings of ASME/AIChE Heat Transfer Conference
,
Minneapolis
, pp.
1
5
.
13.
Maydanik
,
Y. F.
,
2005
,
“Loop Heat Pipes,”
Appl. Therm. Eng.
,
25
(
5–6
), pp.
635
657
.10.1016/j.applthermaleng.2004.07.010
14.
Maydanik
,
Y. F.
,
Ferchtater
,
Y. G.
, and
Goncharov
,
K. A.
,
1991
, “
Capillary Pump Loop for the Systems of Thermal Regulation of Spacecraft
,”
4th European Symposium on Space Environment and Control Systems
,
Florence, Italy
, Report No. ESA SP-324.
15.
Stenger
,
F. J.
,
1966
,
“Experimental Feasibility Study of Water-Filled Capillary-Pumped Heat-Transfer Loops,” NASA LeRC Report No. NASA-TM-X-1310.
16.
Ku
,
J.
,
1993
, “
Capillary Pump Loop for the Systems of Thermal Regulation of Spacecraft
,”
Proceedings of ASME National Heat Transfer Conference
,
Atlanta, GA
.
17.
Akachi
,
H.
,
1990
,
“Structure of a Heat Pipe,”
U.S. Patent No. 4,921,041.
18.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
,
“Advances and Unsolved Issues in Pulsating Heat Pipes,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.10.1080/01457630701677114
19.
Cotter
,
T. P.
,
1984
, “
Principles and Prospects for Micro Heat Pipes
,”
Proceedings of 5th International Heat Pipe Conference
,
Tsukuba, Japan
, pp.
328
335
.
20.
Peterson
,
G. P.
,
1992
,
“Overview of Micro Heat Pipe Research and Development,”
Appl. Mech. Rev.
,
45
(
5
), pp.
175
189
.10.1115/1.3119755
21.
Cao
,
Y.
, and
Faghri
,
A.
,
1994
,
“Micro/Miniature Heat Pipes and Operating Limitations,”
J. Enhanced Heat Transfer
,
1
(
3
), pp.
265
274
.
22.
Hopkins
,
R.
,
Faghri
,
A.
, and
Khrustalev
,
D.
,
1999
,
“Flat Miniature Heat Pipes With Micro Capillary Grooves,”
ASME J. Heat Transfer
,
121
(
1
), pp.
102
109
.10.1115/1.2825922
23.
Peterson
,
G. P.
, and
Ma
,
H. B.
,
1999
,
“Temperature Response of Heat Transport in a Micro Heat Pipe,”
ASME J. Heat Transfer
,
121
(
2
), pp.
438
445
.10.1115/1.2825997
24.
Le Berre
,
M.
,
Launay
,
S.
,
Sartre
,
V.
, and
Lallemand
,
M.
,
2003
,
“Fabrication and Experimental Investigation of Silicon Micro Heat Pipes for Cooling Electronics,”
J. Micromech. Microeng.
,
13
(
3
), pp.
436
441
.10.1088/0960-1317/13/3/313
25.
Launay
,
S.
,
Sartre
,
V.
, and
Lallemand
,
M.
,
2004
,
“Experimental Study on Silicon Micro-Heat Pipe Arrays,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
233
243
.10.1016/j.applthermaleng.2003.08.003
26.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1994
,
“Thermal Analysis of a Micro Heat Pipe,”
ASME J. Heat Transfer
,
116
(
1
), pp.
189
198
.10.1115/1.2910855
27.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1996
,
“Enhanced Flat Miniature Axially Grooved Heat Pipe,”
ASME J. Heat Transfer
,
118
(
1
), pp.
261
264
.10.1115/1.2824057
28.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
,
“Heat Transfer in the Inverted Meniscus Type Evaporator at High Heat Fluxes,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3091
3101
.10.1016/0017-9310(95)00003-R
29.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1996
,
“Estimation of the Maximum Heat Flux in the Inverted Meniscus Type Evaporator of a Flat Miniature Heat Pipe,”
Int. J. Heat Mass Transfer
,
39
(
9
), pp.
1899
1909
.10.1016/0017-9310(95)00270-7
30.
Cao
,
Y.
, and
Faghri
,
A.
,
1991
,
“Transient Multidimensional Analysis of Nonconventional Heat Pipes With Uniform and Nonuniform Heat Distributions,”
ASME J. Heat Transfer
,
113
(
4
), pp.
995
1002
.10.1115/1.2911233
31.
Zuo
,
Z. J.
,
Faghri
,
A.
, and
Langston
,
L.
,
1998
,
“Numerical Analysis of Heat Pipe Turbine Vane Cooling,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
735
743
.10.1115/1.2818461
32.
Jang
,
J. H.
,
Faghri
,
A.
,
Chang
,
W. S.
, and
Mahefkey
,
E. T.
,
1990
,
“Mathematical Modeling and Analysis of Heat Pipe Start-Up From the Frozen State,”
ASME J. Heat Transfer
,
112
(
3
), pp.
586
594
.10.1115/1.2910427
33.
Faghri
,
A.
,
1992
,
“Frozen Start-Up Behavior of Low-Temperature Heat Pipes,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
1681
1694
.10.1016/0017-9310(92)90139-J
34.
Faghri
,
A.
,
1986
,
“Vapor Flow Analysis in a Double-Walled Concentric Heat Pipe,”
Numerical Heat Transfer
,
10
(
6
), pp.
583
595
.10.1080/10407788608913537
35.
Faghri
,
A.
, and
Parvani
,
S.
,
1988
,
“Numerical Analysis of Laminar Flow in a Double-Walled Annular Heat Pipe,”
J. Thermophys. Heat Transfer
,
2
(
3
), pp.
165
171
.10.2514/3.81
36.
Cao
,
Y.
,
Faghri
,
A.
, and
Mahefkey
,
E. T.
,
1989
,
“The Thermal Performance of Heat Pipes With Localized Heat Input,”
Int. J. Heat Mass Transfer
,
32
(
7
), pp.
1279
1287
.10.1016/0017-9310(89)90028-8
37.
Rosenfeld
,
J. H.
,
1987
,
“Modeling of Heat Transfer Into a Heat Pipe for a Localized Heat Input Zone,”
AIChE Symp. Ser.
,
83
, pp.
71
76
.
38.
Chen
,
M. M.
, and
Faghri
,
A.
,
1990
,
“An Analysis of the Vapor Flow and the Heat Conduction Through the Liquid-Wick and Pipe Wall in a Heat Pipe With Single Or Multiple Heat Sources,”
Int. J. Heat Mass Transfer
,
33
(
9
), pp.
1945
1955
.10.1016/0017-9310(90)90226-K
39.
Ivanovskii
,
M. N.
,
Sorokin
,
V. P.
, and
Yagodkin
,
I. V.
,
1982
,
The Physical Principles of Heat Pipes
,
Clarendon Press
,
Oxford, UK
.
40.
Faghri
,
A.
, and
Buchko
,
M.
,
1991
,
“Experimental and Numerical Analysis of Low-Temperature Heat Pipes With Multiple Heat Sources,”
ASME J. Heat Transfer
,
113
(
3
), pp.
728
734
.10.1115/1.2910624
41.
Schmalhofer
,
J.
, and
Faghri
,
A.
,
1993
,
“A Study of Circumferentially-Heated and Block-Heated Heat Pipes—I. Experimental Analysis and Generalized Analytical Prediction of Capillary Limits,”
Int. J. Heat Mass Transfer
,
36
(
1
), pp.
201
212
.10.1016/0017-9310(93)80080-E
42.
Schmalhofer
,
J.
, and
Faghri
,
A.
,
1993
,
“A Study of Circumferentially-Heated and Block-Heated Heat Pipes—II. Three-Dimensional Numerical Modeling as a Conjugate Problem,”
Int. J. Heat Mass Transfer
,
36
(
1
), pp.
213
226
.10.1016/0017-9310(93)80081-5
43.
Zhu
,
N.
, and
Vafai
,
K.
,
1998
,
“Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: A Three—Dimensional Analytical and Numerical Investigation,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
159
174
.10.1016/S0017-9310(97)00075-6
44.
Lefèvre
,
F.
, and
Lallemand
,
M.
,
2006
,
“Coupled Thermal and Hydrodynamic Models of Flat Micro Heat Pipes for the Cooling of Multiple Electronic Components,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1375
1383
.10.1016/j.ijheatmasstransfer.2005.10.001
45.
Wang
,
Y.
, and
Vafai
,
K.
,
2000
,
“An Experimental Investigation of the Transient Characteristics on a Flat-Plate Heat Pipe During Startup and Shutdown Operations,”
ASME J. Heat Transfer
,
122
(
3
), pp.
525
535
.10.1115/1.1287725
46.
Aghvami
,
M.
, and
Faghri
,
A.
,
2011
,
“Analysis of Flat Heat Pipes With Various Heating and Cooling Configurations,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2645
2655
.10.1016/j.applthermaleng.2011.04.034
47.
Shabgard
,
H.
, and
Faghri
,
A.
,
2011
,
“Performance Characteristics of Cylindrical Heat Pipes With Multiple Heat Sources,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3410
3419
.10.1016/j.applthermaleng.2011.06.026
48.
Jang
,
J. H.
,
Faghri
,
A.
, and
Chang
,
W. S.
,
1991
,
“Analysis of the One-Dimensional Transient Compressible Vapor Flow in Heat Pipes,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2029
2037
.10.1016/0017-9310(91)90214-Y
49.
Bowman
,
W. J.
,
1987
, “
Simulated Heat Pipe Vapor Dynamics
,”
Ph.D. dissertation
,
Air Force Institute of Technology
,
Dayton, OH
.
50.
Cao
,
Y.
, and
Faghri
,
A.
,
1990
,
“Transient Two-Dimensional Compressible Analysis for High-Temperature Heat Pipes With Pulsed Heat Input,”
Numer. Heat Transfer, Part A: Applications
,
18
(
4
), pp.
483
502
.10.1080/10407789008944804
51.
Faghri
,
A.
,
Buchko
,
M.
, and
Cao
,
Y.
,
1991
,
“A Study of High-Temperature Heat Pipes With Multiple Heat Sources and Sinks: Part II—Analysis of Continuum Transient and Steady-State Experimental Data With Numerical Predictions,”
ASME J. Heat Transfer
,
113
(
4
), pp.
1010
1016
.10.1115/1.2911194
52.
Faghri
,
A.
,
Buchko
,
M.
, and
Cao
,
Y.
,
1991
,
“A Study of High-Temperature Heat Pipes With Multiple Heat Sources and Sinks: Part I—Experimental Methodology and Frozen Startup Profiles,”
ASME J. Heat Transfer
,
113
(
4
), pp.
1003
1009
.10.1115/1.2911193
53.
Cao
,
Y.
, and
Faghri
,
A.
,
1993
,
“Conjugate Modeling of High-Temperature Nosecap and Wing Leading Edge Heat Pipes,”
ASME J. Heat Transfer
,
115
(
3
), pp.
819
822
.10.1115/1.2910765
54.
Zuo
,
Z. J.
, and
Faghri
,
A.
,
1997
,
“Boundary Element Approach to Transient Heat Pipe Analysis,”
Numer. Heat Transfer, Part A
,
32
(
3
), pp.
205
220
.10.1080/10407789708913888
55.
Zhu
,
N.
, and
Vafai
,
K.
,
1998
,
“Analytical Modeling of the Startup Characteristics of Asymmetrical Flat-Plate and Disk-Shaped Heat Pipes,”
Int. J. Heat Mass Transfer
,
41
(
17
), pp.
2619
2637
.10.1016/S0017-9310(97)00325-6
56.
Rice
,
J.
, and
Faghri
,
A.
,
2007
,
“Analysis of Porous Wick Heat Pipes, Including Capillary Dry-Out Limitations,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
475
486
.10.2514/1.24809
57.
Tournier
,
J. M.
, and
El-Genk
,
M. S.
,
1994
,
“A Heat Pipe Transient Analysis Model,”
Int. J. Heat Mass Transfer
,
37
(
5
), pp.
753
762
.10.1016/0017-9310(94)90113-9
58.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
, and
Vadakkan
,
U.
,
2011
,
“A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
153
168
.10.1016/j.ijheatmasstransfer.2010.09.057
59.
Cao
,
Y.
, and
Faghri
,
A.
,
1993
,
“Simulation of the Early Startup Period of High-Temperature Heat Pipes From the Frozen State by a Rarefied Vapor Self-Diffusion Model,”
ASME J. Heat Transfer
,
115
(
1
), pp.
239
246
.10.1115/1.2910655
60.
Cao
,
Y.
, and
Faghri
,
A.
,
1993
,
“A Numerical Analysis of High-Temperature Heat Pipe Startup From the Frozen State,”
ASME J. Heat Transfer
,
115
(
1
), pp.
247
254
.10.1115/1.2910657
61.
Ponnappan
,
R.
,
1990
, “
Comparison of Vacuum and Gas-Loaded Mode Performances of a LMHP
,” Proceedings of
AIAA
/ASME 5th Joint Thermophysics and Heat Transfer Conference,
Seattle, WA
, Paper No. AIAA-90-1755.10.2514/6.1990-1755
62.
Cao
,
Y.
, and
Faghri
,
A.
,
1992
,
“Closed-Form Analytical Solutions of High-Temperature Heat Pipe Startup and Frozen Startup Limitation,”
ASME J. Heat Transfer
,
114
(
4
), pp.
1028
1035
.10.1115/1.2911873
63.
Hall
,
M. L.
,
Merrigan
,
M. A.
, and
Reid
,
R. S.
,
1994
, “
Status Report on the THROHPUT Transient Heat Pipe Modeling Code
,”
AIP
Conf. Proc. of the 11th Symposium on Space Nuclear Power and Propulsion,
American Institute of Physics
,
New York, NY
, Vol. 301, pp.
965
970
.10.1063/1.2950294
64.
Tournier
,
J. M.
, and
El-Genk
,
M. S.
,
1996
,
“A Vapor Flow Model for Analysis of Liquid-Metal Heat Pipe Startup From a Frozen State,”
Int. J. Heat Mass Transfer
,
39
(
18
), pp.
3767
3780
.10.1016/0017-9310(96)00066-X
65.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
,
“Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,”
ASME J. Heat Transfer
,
117
(
4
), pp.
1048
1054
.10.1115/1.2836280
66.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
,
“Heat Transfer During Evaporation on Capillary-Grooved Structures of Heat Pipes,”
ASME J. Heat Transfer
,
117
(
3
), pp.
740
747
.10.1115/1.2822638
67.
Faghri
,
A.
, and
Khrustalev
,
D.
,
1997
,
“Advances in Modeling of Enhanced Flat Miniature Heat Pipes With Capillary Grooves,”
J. Enhanced Heat Transfer
,
4
(
2
), pp.
99
109
.
68.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
,
2008
,
“A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe With a Grooved Wick,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4637
4650
.10.1016/j.ijheatmasstransfer.2008.02.039
69.
Spendel
,
T.
,
1984
, “
Laminar Film Condensation Heat Transfer in Closed Two-Phase Thermosyphons
,”
Proceedings of 5th International Heat Pipe Conference
,
Tsukuba, Japan
, May 14–18.
70.
Harley
,
C.
, and
Faghri
,
A.
,
1994
,
“Complete Transient Two-Dimensional Analysis of Two-Phase Closed Thermosyphons Including the Falling Condensate Film,”
ASME J. Heat Transfer
,
116
(
2
), pp.
418
426
.10.1115/1.2911414
71.
Hijikata
,
K.
,
Chen
,
S. J.
, and
Tien
,
C. L.
,
1984
,
“Noncondensible Gas Effect on Condensation in a Two-Phase Closed Thermosyphon,”
Int. J. Heat Mass Transfer
,
27
(
8
), pp.
1319
1325
.10.1016/0017-9310(84)90059-0
72.
Kobayashi
,
Y.
, and
Matsumoto
,
T.
,
1987
, “
Vapor Condensation in the Presence of Non-Condensible Gas in the Gravity Assisted Thermosyphon
,”
Proceedings of 6th International Heat Pipe Conference
,
Grenoble, France
.
73.
Peterson
,
P. F.
, and
Tien
,
C. L.
,
1989
,
“Numerical and Analytical Solutions for Two-Dimensional Gas Distribution in Gas-Loaded Heat Pipes,”
ASME J. Heat Transfer
,
111
(
3
), pp.
598
604
.10.1115/1.3250724
74.
Harley
,
C.
, and
Faghri
,
A.
,
1994
, “
Transient Gas-Loaded Thermosyphon Analysis
,”
Proceedings of the 10th International Heat Transfer Conference
,
Brighton, England
.
75.
Zuo
,
Z. J.
, and
Gunnerson
,
F. S.
,
1995
,
“Heat Transfer Analysis of an Inclined Two-Phase Closed Thermosyphon,”
ASME J. Heat Transfer
,
117
(
4
), pp.
1073
1075
.10.1115/1.2836287
76.
Lin
,
L.
, and
Faghri
,
A.
,
1997
,
“Steady-State Performance in a Thermosyphon With Tube Separator,”
Appl. Therm. Eng.
,
17
(
7
), pp.
667
679
.10.1016/S1359-4311(96)00084-1
77.
Lin
,
L.
, and
Faghri
,
A.
,
1998
,
“An Analysis of Two-Phase Flow Stability in a Thermosyphon With Tube Separator,”
Appl. Therm. Eng.
,
18
(
6
), pp.
441
455
.10.1016/S1359-4311(97)00046-X
78.
El-Genk
,
M. S.
, and
Saber
,
H. H.
,
1999
,
“Determination of Operation Envelopes for Closed, Two-Phase Thermosyphons,”
Int. J. Heat Mass Transfer
,
42
(
5
), pp.
889
903
.10.1016/S0017-9310(98)00212-9
79.
Pan
,
Y.
,
2001
,
“Condensation Heat Transfer Characteristics and Concept of Sub-Flooding Limit in a Two-Phase Closed Thermosyphon,”
Int. Commun. Heat Mass Transfer
,
28
(
3
), pp.
311
322
.10.1016/S0735-1933(01)00237-8
80.
Jiao
,
B.
,
Qiu
,
L. M.
,
Zhang
,
X. B.
, and
Zhang
,
Y.
,
2008
,
“Investigation on the Effect of Filling Ratio on the Steady-State Heat Transfer Performance of a Vertical Two-Phase Closed Thermosyphon,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1417
1426
.10.1016/j.applthermaleng.2007.09.009
81.
Jiao
,
B.
,
Qiu
,
L. M.
,
Gan
,
Z. H.
, and
Zhang
,
X. B.
,
2012
,
“Determination of the Operation Range of a Vertical Two-Phase Closed Thermosyphon,”
Heat Mass Transfer
,
48
(
6
), pp.
1043
1055
.10.1007/s00231-011-0954-x
82.
Faghri
,
A.
,
Gogineni
,
S.
, and
Thomas
,
S.
,
1993
,
“Vapor Flow Analysis of an Axially Rotating Heat Pipe,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2293
2303
.10.1016/S0017-9310(05)80114-0
83.
Harley
,
C.
, and
Faghri
,
A.
,
1995
,
“Two-Dimensional Rotating Heat Pipe Analysis,”
ASME J. Heat Transfer
,
117
(
1
), pp.
202
208
.10.1115/1.2822304
84.
Lin
,
L.
, and
Faghri
,
A.
,
1997
,
“Heat Transfer Analysis of Stratified Flow in Rotating Heat Pipes With Cylindrical and Stepped Walls,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4393
4404
.10.1016/S0017-9310(97)00060-4
85.
Lin
,
L.
, and
Faghri
,
A.
,
1997
,
“Steady-State Performance of a Rotating Miniature Heat Pipe,”
J. Thermophys. Heat Transfer
,
11
(
4
), pp.
513
518
.10.2514/2.6292
86.
Lin
,
L. C.
, and
Faghri
,
A.
,
1998
,
“Condensation in Rotating Stepped Wall Heat Pipes With Hysteretic Annular Flow,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
94
99
.10.2514/2.6307
87.
Lin
,
L.
, and
Faghri
,
A.
,
1999
,
“Heat Transfer in Micro Region of a Rotating Miniature Heat Pipe,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1363
1369
.10.1016/S0017-9310(98)00270-1
88.
Harley
,
C.
, and
Faghri
,
A.
,
2000
, “
Transient Gas-Loaded Rotating Heat Pipes
,”
Proceedings of the 15th National and 4th ISHMT/ASME Heat and Mass Transfer Conference
,
Pune, India
.
89.
Maydanik
,
Y. F.
,
Fershtater
,
Y. G.
, and
Solodovnik
,
N.
,
1994
, “Loop Heat Pipes: Design, Investigation, Prospects of Use in Aerospace Technics,”
SAE
Paper No. 941185.10.4271/941185
90.
Kaya
,
T.
, and
Hoang
,
T. T.
,
1999
,
“Mathematical Modeling of Loop Heat Pipes and Experimental Validation,”
J. Thermophys. Heat Transfer
,
13
(
3
), pp.
314
320
.10.2514/2.6461
91.
Hoang
,
T. T.
, and
Kaya
,
T.
,
1999
, “Mathematical Modeling of Loop Heat Pipes With Two-Phase Pressure Drop,”
AIAA
Paper No. 1999-344810.2514/6.1999-3448.
92.
Kaya
,
T.
, and
Ku
,
J.
,
1999
, “A Parametric Study of Performance Characteristics of Loop Heat Pipes,”
SAE
Paper No. 1999-01-2006.10.4271/1999-01-2006
93.
Muraoka
,
I.
,
Ramos
,
F. M.
, and
Vlassov
,
V. V.
,
2001
,
“Analysis of the Operational Characteristics and Limits of a Loop Heat Pipe With Porous Element in the Condenser,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2287
2297
.10.1016/S0017-9310(00)00259-3
94.
Kaya
,
T.
, and
Ku
,
J.
,
2003
,
“Thermal Operational Characteristics of a Small-Loop Heat Pipe,”
J. Thermophys. Heat Transfer
,
17
(
4
), pp.
464
470
.10.2514/2.6805
95.
Hamdan
,
M. O.
,
2003
, “
Loop Heat Pipe (LHP) Modeling and Development by Utilizing Coherent Porous Silicon (CPS) Wicks
,”
Ph.D. thesis
,
University of Cincinnati
,
Cincinnati, OH
.
96.
Chuang
,
P. A.
,
2003
, “
An Improved Steady-State Model of Loop Heat Pipe Based on Experimental and Theoretical Analyses
,”
Ph.D. thesis
,
Pennsylvania State University, University Park
,
PA
.
97.
Furukawa
,
M.
,
2006
,
“Model-Based Method of Theoretical Design Analysis of a Loop Heat Pipe,”
J. Thermophys. Heat Transfer
,
20
(
1
), pp.
111
121
.10.2514/1.14675
98.
Kaya
,
T.
, and
Goldak
,
J.
,
2006
,
“Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3211
3220
.10.1016/j.ijheatmasstransfer.2006.01.028
99.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2007
,
“Parametric Analysis of Loop Heat Pipe Operation: A Literature Review,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
621
636
.10.1016/j.ijthermalsci.2006.11.007
100.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjourn
,
J.
,
2008
,
“Analytical Model for Characterization of Loop Heat Pipes,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
623
631
.10.2514/1.37439
101.
Cullimore
,
B.
, and
Baumann
,
J.
,
2000
, “
Steady State and Transient Loop Heat Pipe Modeling
,”
Proceedings of the 34th International Conference on Environmental Systems (ICES)
,
Toulouse, France
,
SAE
Paper No. 2000-01-2316.10.4271/2000-01-2316
102.
Hoang
,
T.
, and
Ku
,
J.
,
2003
, “Transient Modeling of Loop Heat Pipes,”
AIAA
Paper No. 2003-6082.10.2514/6.2003-6082
103.
Launay
,
S.
,
Sartre
V.
, and
Bonjour
,
J.
,
2007
, “
Effects of Fluid Thermophysical Properties on Loop Heat Pipe Operation
,”
Proceedings of the 14th International Heat Pipe Conference
,
Florianopolis, Brazil
.
104.
Launay
,
S.
,
Platel
,
V.
,
Dutour
,
S.
, and
Joly
,
J. L.
,
2007
,
“Transient Modeling of Loop Heat Pipes for the Oscillating Behavior Study,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
487
495
.10.2514/1.26854
105.
Kaya
,
T.
,
Pérez
,
R.
,
Gregori
,
C.
, and
Torres
,
A.
,
2008
,
“Numerical Simulation of Transient Operation of Loop Heat Pipes,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
967
974
.10.1016/j.applthermaleng.2007.06.037
106.
Chernysheva
,
M. A.
, and
Maydanik
,
Y. F.
,
2008
,
“Numerical Simulation of Transient Heat and Mass Transfer in a Cylindrical Evaporator of a Loop Heat Pipe,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2007.12.021
107.
Khrustalev
,
D.
,
2010
, “
Advances in Transient Modeling of Loop Heat Pipe Systems With Multiple Components
,”
AIP Conf. Proc.
,
1208
, pp.
55
–-
67
.10.1063/1.3326285
108.
Boo
,
J. H.
, and
Chung
,
W. B.
,
2004
, “
Thermal Performance of a Small-Scale Loop Heat Pipe With PP Wick
,”
Proceedings of the 13th International Heat Pipe Conference
,
Shanghai, China
, pp.
259
264
.
109.
Ambirajan
,
A.
,
Adoni
,
A. A.
,
Vaidya
,
J. S.
,
Rajendran
,
A. A.
,
Kumar
,
D.
, and
Dutta
,
P.
,
2012
,
“Loop Heat Pipes: A Review of Fundamentals, Operation, and Design,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
387
405
.10.1080/01457632.2012.614148
110.
Kiper
,
A. M.
,
Feric
,
G.
,
Anjum
,
M.
, and
Swanson
,
T. D.
,
1990
, “
Transient Analysis of a Capillary Pumped Loop Heat Pipe
,” Proceedings of
AIAA
/ASME 5th Joint Thermophysics and Heat Transfer Conference,
Seattle, WA
, Paper No. AIAA-90-1685.10.2514/6.1990-1685
111.
Cao
,
Y.
, and
Faghri
,
A.
,
1994
,
“Conjugate Analysis of a Flat-Plate Type Evaporator for Capillary Pumped Loops With Three-Dimensional Vapor Flow in the Groove,”
Int. J. Heat Mass Transfer
,
37
(
3
), pp.
401
409
.10.1016/0017-9310(94)90074-4
112.
Cao
,
Y.
, and
Faghri
,
A.
,
1994
,
“Analytical Solutions of Flow and Heat Transfer in a Porous Structure With Partial Heating and Evaporation on the Upper Surface,”
Int. J. Heat Mass Transfer
,
37
(
10
), pp.
1525
1533
.10.1016/0017-9310(94)90154-6
113.
Kroliczek
,
E. J.
,
Ku
,
J.
, and
Ollendorf
,
S.
,
1984
, “
Design, Development, and Test of a Capillary Pump Loop Heat Pipe
,” Proceedings of
AIAA
19th Thermophysics Conference,
Snowmass, CO
, Paper No. AIAA-84-172010.2514/6.1984-1720.
114.
Ku
,
J.
,
Kroliczek
,
E. J.
,
Butler
,
D.
,
Schweickart
,
R. B.
, and
McIntosh
,
R.
,
1986
, “
Capillary Pumped Loop GAS and Hitchhiker Flight Experiments
,” Proceedings of
AIAA
/ASME 4th Joint Thermophysics and Heat Transfer Conference,
Boston, MA
, Paper No. AIAA-86-1249.10.2514/6.1986-1249
115.
Ku
,
J.
,
Kroliczek
,
E. J.
,
Taylor
,
W. J.
, and
McIntosh
,
R.
,
1986
, “
Functional and Performance Tests of Two Capillary Pumped Loop Engineering Models
,” Proceedings of
AIAA
/ASME 4th Joint Thermophysics and Heat Transfer Conference,
Boston, MA
, Paper No. AIAA-86-1248.10.2514/6.1986-1248
116.
Ku
,
J.
,
Kroliczek
,
E. J.
, and
McIntosh
,
R.
,
1987
, “
Analytical Modelling of the Capillary Pumped Loop
,”
Proceedings of the 6th International Heat Pipe Conference
,
Grenoble, France
.
117.
Ku
,
J.
,
Kroliczek
,
E. J.
, and
McIntosh
,
R.
,
1987
, “
Capillary Pumped Loop Technology Development
,”
Proceedings of the 6th International Heat Pipe Conference
,
Grenoble, France
.
118.
Chalmers
,
D. R.
,
Fredley
,
J.
,
Ku
,
J.
, and
Kroliczek
,
E. J.
,
1988
, “
Design of a Two-Phase Capillary Pumped Flight Experiment
,”
Proceedings of 18th Intersociety Conference on Environmental Systems
,
San Francisco, CA
,
SAE
Paper No. 881086.10.4271/881086
119.
Ku
,
J.
,
Kroliczek
,
E. J.
,
McCabe
,
M. E.
, and
Benner
,
S. M.
,
1988
, “
A High Power Spacecraft Thermal Management System
,” Proceedings of
AIAA
Thermophysics, Plasmadynamics, and Lasers Conference,
San Antonio, TX
, Paper No. AIAA-88-270210.2514/6.1988-2702.
120.
Benner
,
S.
,
Costello
,
F.
, and
Ku
,
J.
,
1989
, “
SINFAC Simulation of a High-Power Hybrid CPL
,”
Proceedings of 27th Aerospace Sciences Meeting
,
Reno, NV
,
AIAA
Paper No. AIAA-89-0316.10.2514/6.1989-316
121.
Cullimore
,
B.
,
1991
, “
Start Up Transients in Capillary Pumped Loops
,”
AIAA
26th Thermophysics Conference,
Honolulu, HI
, Paper No. AIAA-91-1374.10.2514/6.1991-1374
122.
Wu
,
D.
, and
Peterson
,
G. P.
,
1991
,
“Investigation of the Transient Characteristics of a Micro Heat Pipe,”
J. Thermophys. Heat Transfer
,
5
(
2
), pp.
129
134
.10.2514/3.239
123.
Sartre
,
V.
,
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
,
2000
,
“Effect of Interfacial Phenomena on Evaporative Heat Transfer in Micro Heat Pipes 1,”
Int. J. Therm. Sci.
,
39
(
4
), pp.
498
504
.10.1016/S1290-0729(00)00205-2
124.
Suman
,
B.
, and
Kumar
,
P.
,
2005
,
“An Analytical Model for Fluid Flow and Heat Transfer in a Micro-Heat Pipe of Polygonal Shape,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4498
4509
.10.1016/j.ijheatmasstransfer.2005.05.001
125.
Wang
,
Y. X.
, and
Peterson
,
G. P.
,
2002
,
“Analysis of Wire-Bonded Micro Heat Pipe Arrays,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
346
355
.10.2514/2.6711
126.
Launay
,
S.
,
Sartre
,
V.
,
Mantelli
,
M. B. H.
,
De Paiva
,
K. V.
, and
Lallemand
,
M.
,
2004
,
“Investigation of a Wire Plate Micro Heat Pipe Array,”
Int. J. Therm. Sci.
,
43
(
5
), pp.
499
507
.10.1016/j.ijthermalsci.2003.10.006
127.
Miyazaki
,
Y.
, and
Akachi
,
H.
,
1996
, “
Heat Transfer Characteristics of Looped Capillary Heat Pipe
,”
Proceedings of the 5th International Heat Pipe Symposium
,
Melbourne, Australia
, pp.
378
383
.
128.
Miyazaki
,
Y.
, and
Akachi
,
H.
,
1998
, “
Self Excited Oscillation of Slug Flow in a Micro Channel
,”
Proceedings of the 3rd International Conference on Multiphase Flow
,
Lyon, France
.
129.
Miyazaki
,
Y.
, and
Arikawa
,
M.
,
1999
, “
Oscillatory Flow in the Oscillating Heat Pipe
,”
Proceedings of the 11th International Heat Pipe Conference
,
Tokyo, Japan
, pp.
131
136
.
130.
Hosoda
,
M.
,
Nishio
,
S.
, and
Shirakashi
,
R.
,
1999
, “
Meandering Closed Loop Heat Transport Tube (Propagation Phenomena of Vapor Plug)
,”
Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference
,
San Diego, CA
, pp.
1
6
, Paper No. AJTE99-6306.
131.
Zuo
,
Z. J.
,
North
,
M. T.
, and
Ray
,
L.
,
1999
, “
Combined Pulsating and Capillary Heat Pipe Mechanism for Cooling of High Heat Flux Electronics
,”
Proceedings of ASME Heat Transfer Device Conference
,
Nashville, TN
, pp.
2237
2243
.
132.
Zuo
,
Z. J.
,
North
,
M. T.
, and
Wert
,
K. L.
,
2001
,
“High Heat Flux Heat Pipe Mechanism for Cooling of Electronics,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
220
225
.10.1109/6144.926386
133.
Wong
,
T. N.
,
Tong
,
B. Y.
,
Lim
,
S. M.
, and
Ooi
,
K. T.
,
1999
, “
Theoretical Modeling of Pulsating Heat Pipe
,”
Proceedings of the 11th International Heat Pipe Conference
,
Tokyo, Japan
, pp.
159
163
.
134.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
,
“Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
135.
Sakulchangsatjatai
,
P.
,
Terdtoon
,
P.
,
Wongratanaphisan
,
T.
,
Kamonpet
,
P.
, and
Murakami
,
M.
,
2004
,
“Operation Modeling of Closed-End and Closed-Loop Oscillating Heat Pipes at Normal Operating Condition,”
Appl. Therm. Eng.
,
24
(
7
), pp.
995
1008
.10.1016/j.applthermaleng.2003.11.006
136.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M. B.
,
2002
,
“Analysis of Liquid-Vapor Pulsating Flow in a U-Shaped Miniature Tube,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2501
2508
.10.1016/S0017-9310(01)00348-9
137.
Zhang
,
Y.
, and
Faghri
,
A.
,
2003
,
“Oscillatory Flow in Pulsating Heat Pipes With Arbitrary Numbers of Turns,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
340
347
.10.2514/2.6791
138.
Dobson
,
R. T.
, and
Harms
,
T. M.
,
1999
, “
Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipes
,”
Proceedings of the 11th International Heat Pipe Conference
,
Tokyo, Japan
, pp.
12
16
.
139.
Dobson
,
R. T.
,
2004
,
“Theoretical and Experimental Modelling of an Open Oscillatory Heat Pipe Including Gravity,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
113
119
.10.1016/j.ijthermalsci.2003.05.003
140.
Dobson
,
R. T.
,
2005
,
“An Open Oscillatory Heat Pipe Water Pump,”
Appl. Therm. Eng.
,
25
(
4
), pp.
603
621
.10.1016/j.applthermaleng.2004.07.005
141.
Zhang
,
Y. W.
, and
Faghri
,
A.
,
2002
,
“Heat Transfer in a Pulsating Heat Pipe With Open End,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
755
764
.10.1016/S0017-9310(01)00203-4
142.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
,
“Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.10.1108/09615530210434304
143.
Liang
,
S. B.
, and
Ma
,
H. B.
,
2004
,
“Oscillating Motions of Slug Flow in Capillary Tubes,”
Int. Commun. Heat Mass Transfer
,
31
(
3
), pp.
365
375
.10.1016/j.icheatmasstransfer.2004.02.007
144.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
,
2006
,
“An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe,”
Microfluid. Nanofluid.
,
2
(
2
), pp.
171
179
.10.1007/s10404-005-0061-8
145.
Ma
,
H. B.
,
Maschmann
,
M. R.
, and
Liang
,
S. B.
,
2002
,
“Heat Transport Capability in Pulsating Heat Pipes,”
8th
AIAA
/ASME Joint Thermophysics and Heat Transfer Conference, Paper No. AIAA 2002-2765.10.2514/6.2002-2765
146.
Holley
,
B.
, and
Faghri
,
A.
,
2005
,
“Analysis of Pulsating Heat Pipe With Capillary Wick and Varying Channel Diameter,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2635
2651
.10.1016/j.ijheatmasstransfer.2005.01.013
147.
Khandekar
,
S.
,
Schneider
,
M.
,
Schäfer
,
P.
,
Kulenovic
,
R.
, and
Groll
,
M.
,
2002
,
“Thermofluid Dynamic Study of Flat-Plate Closed-Loop Pulsating Heat Pipes,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
303
317
.10.1080/10893950290098340
148.
Khandekar
,
S.
, and
Gupta
,
A.
,
2007
, “
Embedded Pulsating Heat Pipe Radiators
,”
Proceedings of the 14th International Heat Pipe Conference
,
Florianopolis, Brazil
, pp.
22
27
.
149.
Marcus
,
B. D.
, and
Fleishman
,
G. L.
,
1970
, “Steady State and Transient Performance of Hot Reservoir Gas-Controlled Heat Pipes,” ASME Paper No. 70-HT/SpT-11.
150.
Edwards
,
D. K.
, and
Marcus
,
B. D.
,
1972
, “
Heat and Mass Transfer in the Vicinity of the Vapor-Gas Front in a Gas-Loaded Heat Pipe
,”
ASME J. Heat Transfer
,
94
(
2
), pp.
155
162
.10.1115/1.3449887
151.
Shukla
,
K. N.
,
1981
,
“Transient Response of a Gas-Controlled Heat Pipe,”
AIAA J.
,
19
(
8
), pp.
1063
1070
.10.2514/3.7842
152.
Rohani
,
A. R.
, and
Tien
,
C. L.
,
1973
,
“Steady Two-Dimensional Heat and Mass Transfer in the Vapor-Gas Region of a Gas-Loaded Heat Pipe,”
ASME J. Heat Transfer
,
95
(
3
), pp.
377
382
.10.1115/1.3450067
153.
Harley
,
C.
, and
Faghri
,
A.
,
1994
,
“Transient Two-Dimensional Gas-Loaded Heat Pipe Analysis,”
ASME J. Heat Transfer
,
116
(
3
), pp.
716
723
.10.1115/1.2910927
154.
Ponnappan
,
R.
,
1989
, “Studies on the Startup Transients and Performance of a Gas Loaded Sodium Heat Pipe,” Technical Report, Report No. WRDC-TR-89-2046.
155.
Faghri
,
A.
, and
Harley
,
C.
,
1994
,
“Transient Lumped Heat Pipe Analyses,”
Heat Recovery Syst. CHP
,
14
(
4
), pp.
351
363
.10.1016/0890-4332(94)90039-6
You do not currently have access to this content.