The pumping power diminution consequent to the use of nanoparticle suspensions as heat transfer fluids is analyzed theoretically assuming that nanofluids behave like single-phase fluids. In this hypothesis, all the heat transfer and friction factor correlations originally developed for single-phase flows can be used also for nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this regard, two empirical equations, based on a wide variety of experimental data reported in the literature, are used for the evaluation of the nanofluid effective thermal conductivity and dynamic viscosity. Conversely, the other effective properties are computed by the traditional mixing theory. Both laminar and turbulent flow regimes are investigated, using the operating conditions, the nanoparticle diameter, and the solid–liquid combination as control parameters. The fundamental result obtained is the existence of an optimal particle loading for minimum cost of operation at constant heat transfer rate. A set of empirical dimensional algebraic equations is proposed to determine the optimal particle loading of water-based nanofluids.

References

References
1.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
2.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
,
2005
, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1107
1116
.10.1016/j.ijheatmasstransfer.2004.09.038
3.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
529
535
.10.1016/j.icheatmasstransfer.2006.01.005
4.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
, pp.
193
199
.10.1016/j.ijheatmasstransfer.2008.06.032
5.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L.-W.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2042
2048
.10.1016/j.ijheatmasstransfer.2008.10.025
6.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2189
2195
.10.1016/j.ijheatmasstransfer.2007.11.063
7.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2009
, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
,
131
, p.
112401
.10.1115/1.3133886
8.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
, pp.
e119
e123
.10.1016/j.cap.2008.12.047
9.
He
,
Y.
,
Men
,
Y.
,
Zhao
,
Y.
,
Lu
,
H.
, and
Ding
,
Y.
,
2009
, “
Numerical Investigation Into the Convective Heat Transfer of TiO2 Nanofluids Flowing Through a Straight Tube Under the Laminar Flow Conditions
,”
Appl. Therm. Eng.
,
29
, pp.
1965
1972
.10.1016/j.applthermaleng.2008.09.020
10.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
, pp.
3632
3642
.10.1016/j.applthermaleng.2009.06.019
11.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Laminar Convective Heat Transfer of Non-Newtonian Nanofluids With Constant Wall Temperature
,”
Heat Mass Transfer
,
47
, pp.
203
209
.10.1007/s00231-010-0710-7
12.
Liu
,
D.
, and
Yu
,
L.
,
2011
, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer
,
133
, p.
031009
.10.1115/1.4002462
13.
Ebrahimnia-Bajestan
,
E.
,
Niazmand
,
H.
,
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2011
, “
Numerical Investigation of Effective Parameters in Convective Heat Transfer of Nanofluids Flowing Under a Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4376
4388
.10.1016/j.ijheatmasstransfer.2011.05.006
14.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.10.1080/08916159808946559
15.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
151
155
.10.1115/1.1532008
16.
Maïga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices and Microstructures
,
35
, pp.
543
557
.10.1016/j.spmi.2003.09.012
17.
Behzadmehr
,
A.
,
Saffar-Avval
,
M.
, and
Galanis
,
N.
,
2007
, “
Prediction of Turbulent Forced Convection of a Nanofluid in a Tube With Uniform Heat Flux Using a Two Phase Approach
,”
Int. J. Heat Fluid Flow
,
28
, pp.
211
219
.10.1016/j.ijheatfluidflow.2006.04.006
18.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
, p.
042412
.10.1115/1.2818775
19.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2011
, “
Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
, pp.
341
349
.10.1016/j.ijthermalsci.2010.03.008
20.
Gosselin
,
L.
, and
da Silva
,
A. K.
,
2004
, “
Combined ‘Heat Transfer and Power Dissipation’ Optimization of Nanofluid Flows
,”
Appl. Phys. Lett.
,
85
, pp.
4160
4162
.10.1063/1.1813642
21.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
2007
, “
Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
,
27
, pp.
240
249
.10.1016/j.applthermaleng.2006.04.011
22.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
,
2004
, “
Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids
,”
Phys. Fluids
,
16
, pp.
2395
2401
.10.1063/1.1739247
23.
Hwang
,
K. S.
,
Lee
,
J.-H.
, and
Jang
,
S. P.
,
2007
, “
Buoyancy—Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4003
4010
.10.1016/j.ijheatmasstransfer.2007.01.037
24.
Corcione
,
M.
,
2010
, “
Heat Transfer Features of Buoyancy—Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls
,”
Int. J. Therm. Sci.
,
49
, pp.
1536
1546
.10.1016/j.ijthermalsci.2010.05.005
25.
Corcione
,
M.
,
2011
, “
Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions
,”
Int. J. Heat Fluid Flow
,
32
, pp.
65
77
.10.1016/j.ijheatfluidflow.2010.08.004
26.
Cianfrini
,
M.
,
Corcione
,
M.
, and
Quintino
,
A.
,
2011
, “
Natural Convection Heat Transfer of Nanofluids in Annular Spaces Between Horizontal Concentric Cylinders
,”
Appl. Therm. Eng.
,
31
, pp.
4055
4063
.10.1016/j.applthermaleng.2011.08.010
27.
Dittus
,
P. W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Univ. Calif. Publ. Eng.
,
2
, pp.
443
461
.
28.
Blasius
,
H.
,
1913
, “
Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten
,”
Mitt. Forshung. VDI
,
131
, pp.
1
39
.
29.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
684
.
30.
Sommers
,
A. D.
, and
Yerkes
,
K. L.
,
2009
, “
Experimental Investigation Into the Convective Heat Transfer and System-Level Effects of Al2O3-Propanol Nanofluid
,”
J. Nanopart. Res.
,
12
, pp.
1003
1014
.10.1007/s11051-009-9657-3
31.
Seider
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
, pp.
1429
1436
.10.1021/ie50324a027
32.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
33.
Chang
,
B. H.
,
Mills
,
A. F.
, and
Hernandez
,
E.
,
2008
, “
Natural Convection of Microparticle Suspensions in Thin Enclosures
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1332
1341
.10.1016/j.ijheatmasstransfer.2007.11.030
34.
Hausen
,
H.
,
1959
, “
Neue Gleichungen fur die Warmeubertragung bei Freier oder Erzwungener Stromung
,”
Allg. Waermetech.
,
9
, pp.
75
79
.
35.
Gnielinski
,
V.
,
1998
, “
Forced Convection in Ducts
,”
Heat Exchanger Design Handbook
,
G. F.
Hewitt
, ed.,
Begell House Inc.
,
New York
, pp.
2.5.1-1
2.5.1-13
.
36.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
3rd ed.
,
Wiley, Hoboken
,
NJ
.
37.
Filonenko
,
G. K.
,
1954
, “
Hydraulic Resistance in Pipes
,”
Teploenergetika (Moscow, Russ. Fed.)
,
1
, pp.
40
44
.
38.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
, pp.
789
793
.10.1016/j.enconman.2010.06.072
39.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
4
, pp.
227
233
.10.2963/jjtp.7.227
40.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
, pp.
280
289
.10.1115/1.2825978
41.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.10.1063/1.1341218
42.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.10.1115/1.1571080
43.
Chon
,
C. H.
, and
Kihm
,
K. D.
,
2005
, “
Thermal Conductivity Enhancement of Nanofluids by Brownian Motion
,”
ASME J. Heat Transfer
,
127
, p.
810
.10.1115/1.2033316
44.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
, pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
45.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
, pp.
363
371
.10.1016/j.ijthermalsci.2008.03.009
46.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2010
, “
Experimental Investigations and Theoretical Determinations of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
210
216
.10.1016/j.expthermflusci.2009.10.022
47.
Oh
,
D.-W.
,
Jain
,
A.
,
Eaton
,
J. K.
,
Goodson
,
K. E.
, and
Lee
,
J. S.
,
2008
, “
Thermal Conductivity Measurement and Sedimentation Detection of Aluminium Oxide Nanofluids by Using the 3ω Method
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1456
1461
.10.1016/j.ijheatfluidflow.2008.04.007
48.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
, p.
153107
.10.1063/1.2093936
49.
Palm
,
S. J.
,
Roy
,
G.
, and
Nguyen
,
C. T.
,
2006
, “
Heat Transfer Enhancement With the Use of Nanofluids in Radial Flow Cooling Systems Considering Temperature-Dependent Properties
,”
Appl. Therm. Eng.
,
26
, pp.
2209
2218
.10.1016/j.applthermaleng.2006.03.014
50.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.10.2514/2.6486
51.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.10.1016/S0017-9310(02)00348-4
52.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
, p.
133108
.10.1063/1.2356113
53.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
.10.1016/j.ijheatmasstransfer.2006.10.024
54.
Chen
,
H.
,
Ding
,
Y.
,
He
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids
,”
Chem. Phys. Lett.
,
444
, pp.
333
337
.10.1016/j.cplett.2007.07.046
55.
Chevalier
,
J.
,
Tillement
,
O.
, and
Ayela
,
F.
,
2007
, “
Rheological Properties of Nanofluids Flowing Through Microchannels
,”
Appl. Phys. Lett.
,
91
, p.
233103
.10.1063/1.2821117
56.
Lee
,
J. H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2651
2656
.10.1016/j.ijheatmasstransfer.2007.10.026
57.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
,
2008
, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
,
103
, p.
074301
.10.1063/1.2902483
58.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina—Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
, pp.
1345
1353
.10.1016/j.ijthermalsci.2010.02.013
59.
Pastoriza-Gallego
,
M. J.
,
Casanova
,
C.
,
Páramo
,
R.
,
Barbés
,
B.
,
Legido
,
J. L.
, and
Piñero
,
M. M.
,
2009
, “
A Study on Stability and Thermophysical Properties (Density and Viscosity) of Al2O3 in Water Nanofluid
,”
J. Appl. Phys.
,
106
, p.
064301
.10.1063/1.3187732
60.
Zhao
,
J. F.
,
Luo
,
Z. Y.
,
Ni
,
M. J.
, and
Cen
,
K. F.
,
2009
, “
Dependence of Nanofluid Viscosity on Particle Size and pH Value
,”
Chin. Phys. Lett.
,
26
, p.
066202
.10.1088/0256-307X/26/6/066202
You do not currently have access to this content.