Subcooled flow boiling experiments with water at 0.2-atm pressure assess the utility of fine filament screen laminate enhanced surfaces as high-performance boiling surfaces. Experiments are conducted on vertically oriented, multilayer copper laminates in distilled water. The channel Reynolds number is varied from 2000 to 20,000, and subcooling ranges from 2 to 35 K. Boiling performance is documented for ten different porous surfaces having pore hydraulic diameters ranging from 39 μm to 105 μm, and surface area enhancement ratios ranging from 5 to 37. Heat flux of up to 446 W/cm2 is achieved at 35 K subcooling at a channel Reynolds number of 6000, which represents a 3.5-fold increase in critical heat flux (CHF) over that of the saturated pool boiling on the same surface. Results show that CHF is strongly correlated with subcooling, and the effect of subcooling is more pronounced as the channel Reynolds number is increased. It is found that CHF enhancement due to subcooling and channel Reynolds number is intrinsically linked to the surface area enhancement ratio, which has an optimum that depends on the degree of subcooling. High-speed video imagery (up to 8100 fps) and long-range microscopy are used to document bubble dynamics. Boiling mechanisms inherent to subcooling, enhanced surface geometry, and CHF are discussed.

References

1.
Jakob
,
M.
,
1949
,
Heat Transfer
,
Wiley
,
New York
, pp.
636
637
.
2.
Webb
,
R. L.
,
2004
, “
Donald Q. Kern Lecture Award Paper: Odyssey of the Enhanced Boiling Surface,
ASME J. Heat Transfer
,
126
, pp.
1051
1059
.10.1115/1.1834615
3.
You
,
S. M.
,
Rainey
,
K. N.
, and
Ammerman
,
C. N.
,
2004
, “
A New Microporous Surface Coating for Enhancement of Pool and Flow Boiling Heat Transfer,
Adv. Heat Transfer
,
38
, pp.
73
142
.10.1016/S0065-2717(04)38002-0
4.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface,
Int. J. Heat Mass Transfer
,
47
, pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
5.
Kandlikar
,
S. G.
, and
Spiesman
,
P. H.
,
1997
, “
Effect of Surface Characteristics on Flow Boiling Heat Transfer,
Convective Flow and Pool Boiling Conference, Isree
,
Germany
.
6.
Penley
,
S. J.
, and
Wirtz
,
R. A.
,
2011
, “
Correlation of Subatmospheric Pressure, Saturated, Pool Boiling of Water on a Structured-Porous Surface,
ASME J. Heat Transfer
,
133
, p.
041501
.10.1115/1.4001628
7.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film,
J. Thermophys. Heat Transfer
,
11
(
1
), pp.
90
97
.10.2514/2.6205
8.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part I: Experimental Investigation,
ASME J. Heat Transfer
,
102
, pp.
445
450
.10.1115/1.3244320
9.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part II: Analytical Modeling,
ASME J. Heat Transfer
,
102
, pp.
451
456
.10.1115/1.3244321
10.
Mudawar
,
I.
, and
Bowers
,
M. B.
,
1998
, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling-I: CHF Data and Parametric Effects for Small Diameter Tubes,
Int. J. Heat Mass Transfer
,
42
, pp.
1405
1428
.10.1016/S0017-9310(98)00241-5
11.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2008
, “
Critical Heat Flux of Water at Subatmospheric Pressures in Microchannels,
ASME J. Heat Transfer
,
130
, p.
072403
.10.1115/1.2909077
12.
Zuber
,
N.
,
Tribus
,
M.
, and
Westwater
,
J. W.
,
1961
, “
The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids,
International Developments in Heat Transfer, Part 2, ASME
, pp.
230
236
.
13.
Zuber
,
N.
,
1958
, “
Hydrodynamic Aspects of Boiling Heat Transfer,
Report No. AECU-4439
.
14.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation,
ASME J. Heat Transfer
,
123
, pp.
1071
1079
.10.1115/1.1409265
15.
Sato
,
T.
, and
Matsumura
,
H.
,
1964
, “
On the Conditions of Incipient Subcooled Boiling With Forced Convection,
Bull. JSME
,
7
(
26
), pp.
392
398
.10.1299/jsme1958.7.392
16.
Hall
,
D. D.
, and
Mudawar
,
I.
,
2000
, “
Critical Heat Flux (CHF) for Water Flow in Tubes-II. Subcooled CHF Correlations,
Int. J. Heat Mass Transfer
,
43
, pp.
2605
2640
.10.1016/S0017-9310(99)00192-1
17.
Kandlikar
,
S. G.
,
Mizo
,
V. R.
, and
Cartwright
,
M. D.
,
1995
, “
Investigation of Bubble Departure Mechanism in Subcooled Flow Boiling of Water Using High-Speed Photography,
Proceedings of the Convective Flow Boiling Conference
, pp.
161
166
.
18.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase Change Phenomena
, 2nd ed.,
Taylor and Francis
,
New York
, pp.
227
228
.
19.
Okawa
,
T.
,
Ishida
,
T.
,
Kataoka
,
I.
, and
Mori
,
M.
,
2005
, “
Bubble Rise Characteristics After the Departure From a Nucleation Site in Vertical Upflow Boiling of Subcooled Water,
Nucl. Eng. Des.
,
235
, pp.
1149
1161
.10.1016/j.nucengdes.2005.02.012
20.
Warrier
,
G. R.
,
Basu
,
N.
, and
Dhir
,
V. K.
,
2002
, “
Interfacial Heat Transfer During Subcooled Flow Boiling,
Int. J. Heat Mass Transfer
,
45
, pp.
3947
3959
.10.1016/S0017-9310(02)00102-3
21.
Ponter
,
A. B.
, and
Haigh
,
C. P.
,
1969
, “
The Boiling Crisis in Saturated and Subcooled Pool Boiling and Reduced Pressures,
Int. J. Heat Mass Transfer
,
12
, pp.
429
437
.10.1016/0017-9310(69)90138-0
22.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces,
ASME J. Heat Transfer
,
129
, pp.
1465
1475
.10.1115/1.2759969
23.
Xu
,
J.
, and
Wirtz
,
R. A.
,
2002
, “
In-Plane Effective Thermal Conductivity of Plain-Weave Screen Laminates,
IEEE Trans. Compon., Packag. Techol.
,
25
(
4
), pp.
615
620
.10.1109/TCAPT.2002.807993
24.
Green
,
D. W.
, and
Perry
,
R. H.
,
2008
,
Perry’s Chemical Engineers’ Handbook
, 7th ed.,
McGraw-Hill
. Available at http://www.lavoisier.fr/livre/notice.asp?id=OOLWOKA6SKROWH
25.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels,
Int. J. Heat Mass Transfer
,
47
, pp.
1925
1935
.10.1016/j.ijheatmasstransfer.2003.09.031
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results,
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
27.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
,
1999
,
Handbook of Phase Change Boiling and Condensation
,
Taylor and Francis
,
New York
, pp.
368
370
.
You do not currently have access to this content.