The progressive evaporation and condensation processes in a micro heat pipe, with which high heat fluxes at the liquid–vapor interface are associated, render it a device of high thermal conductance. By coupling the phase-change interfacial resistance model with a mathematical model based on first principles for fluid flow and heat transfer, the axial temperature variations of the liquid and vapor phases as well as those of other field variables are characterized and analyzed. The findings provide a well-defined exposition of the validity of uniform-temperature assumption for the liquid and vapor phases in the analysis of micro heat pipes. In conjunction with the acquisition of liquid and vapor temperature profiles, the heat transfer characteristics of the evaporation process can be analyzed. The local evaporative heat transfer coefficient and heat flux are evaluated. The results indicate that both heat transfer coefficient and heat flux are of considerably high values, confirming that the heat transport capability of a micro heat pipe is dominated by the phase-change heat transfer at the liquid–vapor interface.

References

1.
Cotter
,
T. P.
,
1984
, “
Principles and Prospects for Micro Heat Pipes
,”
Proceedings of the 5th International Heat Pipe Conference
,
Tsukuba, Japan
, pp.
328
335
.
2.
Babin
,
B. R.
,
Peterson
,
G. P
, and
Wu
,
D.
,
1990
, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME J. Heat Transfer
,
112
, pp.
595
601
.10.1115/1.2910428
3.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1994
, “
Thermal Analysis of a Micro Heat Pipe
,”
ASME J. Heat Transfer
,
116
, pp.
189
198
.10.1115/1.2910855
4.
Longtin
,
J. P.
,
Badran
,
B.
, and
Gerner
,
F. M.
,
1994
, “
A One-Dimensional Model of a Micro Heat Pipe During Steady-State Operation
,”
ASME J. Heat Transfer
,
116
, pp.
709
715
.10.1115/1.2910926
5.
Tio
,
K.-K.
,
Liu
,
C. Y.
, and
Toh
,
K. C.
,
2000
, “
Thermal Analysis of Micro Heat Pipes Using a Porous-Medium Model
,”
Heat Mass Transfer
,
36
, pp.
21
28
.10.1007/s002310050359
6.
Suman
,
B.
, and
Hoda
,
N.
,
2005
, “
Effect of Variations in Thermophysical Properties and Design Parameters on the Performance of a V-Shaped Micro Grooved Heat Pipe
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2090
2101
.10.1016/j.ijheatmasstransfer.2005.01.007
7.
Suman
,
B.
, and
Kumar
,
P.
,
2005
, “
An Analytical Model for Fluid Flow and Heat Transfer in a Micro-Heat Pipe of Polygonal Shape
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4498
4509
.10.1016/j.ijheatmasstransfer.2005.05.001
8.
Suman
,
B.
,
2006
, “
On the Fill Charge and the Sensitivity Analysis of a V-Shaped Micro Heat Pipe
,”
AIChE J.
,
52
, pp.
3041
3054
.10.1002/aic.10941
9.
Zhang
,
J.
,
Watson
,
S. J.
, and
Wong
,
H.
,
2007
, “
Fluid Flow and Heat Transfer in a Dual-Wet Micro Heat Pipe
,”
J. Fluid Mech.
,
589
, pp.
1
31
.10.1017/S0022112007007823
10.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
,
2008
, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe With a Grooved Wick
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4637
4650
.10.1016/j.ijheatmasstransfer.2008.02.039
11.
Sugumar
,
D.
, and
Tio
,
K.-K.
,
2009
, “
The Effects of Working Fluid on the Heat Transport Capacity of a Microheat Pipe
,”
ASME J. Heat Transfer
,
131
, p.
012401
.10.1115/1.2977547
12.
Hung
,
Y. M.
, and
Tio
,
K.-K.
,
2010
, “
Analysis of Microheat Pipes With Axial Conduction in the Solid Wall
,”
ASME J. Heat Transfer
,
132
, p.
071301
.10.1115/1.4000947
13.
Hung
,
Y. M.
, and
Seng
,
Q.
,
2011
, “
Effects of Geometric Design on Thermal Performance of Star-Groove Micro-Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1198
1209
.10.1016/j.ijheatmasstransfer.2010.09.070
14.
Swanson
,
L. W.
, and
Peterson
,
G. P.
,
1995
, “
The Interfacial Thermodynamics of Micro Heat Pipes
,”
ASME J. Heat Transfer
,
117
, pp.
195
201
.10.1115/1.2822303
15.
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Edwards
,
D. K.
,
1974
, “
Capillary Flow in Triangular Grooves
,”
ASME J. Appl. Mech.
,
41
, pp.
332
336
.10.1115/1.3423288
16.
Xu
,
X.
, and
Carey
,
V. P.
,
1990
, “
Film Evaporation From a Micro-Grooved Surface: An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
AIAA J. Thermophys. Heat Transfer
,
4
, pp.
512
520
.10.2514/3.215
17.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
, pp.
383
391
.10.1016/0017-9310(92)90276-X
18.
DasGupta
,
S.
,
Schonberg
,
J. A.
, and
Wayner
,
P. C.
, Jr.
,
1993
, “
Investigation of an Evaporating Extended Meniscus Based on the Augmented Young Laplace Equation
,”
ASME J. Heat Transfer
,
115
, pp.
201
208
.10.1115/1.2910649
19.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
AIAA J. Thermophys. Heat Transfer
,
11
, pp.
90
97
.10.2514/2.6205
20.
Sartre
,
V.
,
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
,
2000
, “
Effect of Interfacial Phenomena on Evaporative Heat Transfer in Micro Heat Pipes
,”
Int. J. Therm. Sci.
,
39
, pp.
498
504
.10.1016/S1290-0729(00)00205-2
21.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2011
, “
A Microscale Model for Thin-Film Evaporation in Capillary Wick Structures
,”
Int. J. Heat Mass Transfer
,
54
, pp.
169
179
.10.1016/j.ijheatmasstransfer.2010.09.037
22.
Jiao
,
A. J.
,
Ma
,
H. B.
, and
Critser
,
J. K.
,
2007
, “
Evaporation Heat Transfer Characteristics of a Grooved Heat Pipe With Micro-Trapezoidal Grooves
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2905
2911
.10.1016/j.ijheatmasstransfer.2007.01.009
23.
Lefèvre
,
F.
,
Rullière
,
R.
,
Pandraud
,
G.
, and
Lallemand
,
M.
,
2008
, “
Prediction of the Temperature Field in Flat Plate Heat Pipes With Micro-Grooves—Experimental Validation
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4083
4094
.10.1016/j.ijheatmasstransfer.2007.12.007
24.
Ha
,
J. M.
, and
Peterson
,
G. P.
,
1998
, “
Analytical Prediction of Axial Dry-Out Point for Evaporating Liquids in Axial Microgrooves
,”
ASME J. Heat Transfer
,
120
, pp.
452
457
.10.1115/1.2824270
25.
Catton
,
I.
, and
Stroes
,
G. R.
,
2002
, “
A Semi-Analytical Model to Predict the Capillary Limit of Heated Inclined Triangular Capillary Grooves
,”
ASME J. Heat Transfer
,
124
, pp.
162
168
.10.1115/1.1404119
26.
Sobhan
,
C. B.
, and
Peterson
,
G. P.
,
2008
,
Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications
,
CRC Press
,
Boca Raton
, pp.
204
212
.
27.
Sobhan
,
C. B.
,
Xiaoyang
,
H.
, and
Yu
,
L. C.
,
2000
, “
Investigations on Transient and Steady-State Performance of a Micro Heat Pipe
,”
AIAA J. Thermophys. Heat Transfer
,
14
, pp.
161
169
.10.2514/2.6527
28.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor & Francis
,
Hebron
, pp.
112
120
.
29.
Hopkins
,
R.
,
Faghri
,
A.
, and
Khrustalev
,
D.
,
1991
, “
Flat Miniature Heat Pipes With Micro Capillary Grooves
,”
ASME J. Heat Transfer
,
121
, pp.
102
109
.10.1115/1.2825922
30.
Dunn
,
P. D.
, and
Reay
,
D. A.
,
1994
,
Heat Pipes
,
Pergamon Press
,
New York
.
31.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interface Mass Transfer
,
Columbia University Press
,
New York
.
32.
Mareka
,
R.
, and
Straub
,
J.
,
2001
, “
Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water
,”
Int. J. Heat Mass Transfer
,
44
, pp.
39
53
.10.1016/S0017-9310(00)00086-7
33.
de Gennes
,
P. G.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
, pp.
827
863
.10.1103/RevModPhys.57.827
34.
Potash
,
M.
, Jr.
, and
Wayner
,
P. C.
, Jr.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1851
1863
.10.1016/0017-9310(72)90058-0
35.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes, Modeling, Testing, and Applications
,
Wiley
,
New York
.
You do not currently have access to this content.