In this article, a new hybrid solution to the radiative transfer equation (RTE) is proposed. Following the modified differential approximation (MDA), the radiation intensity is first split into two components: a “wall” component, and a “medium” component. Traditionally, the wall component is determined using a viewfactor-based surface-to-surface exchange formulation, while the medium component is determined by invoking the first-order spherical harmonics (P1) approximation. Recent studies have shown that although the MDA approach is accurate over a large range of optical thicknesses, it is prohibitive for complex three-dimensional geometry with obstructions, both from a computational efficiency as well as memory standpoint. The inefficiency stems from the use of the viewfactor-based approach for determination of the wall-emitted component. In this work, instead, the wall component is determined directly using the control angle discrete ordinates method (CADOM). The new hybrid method was validated for both two-dimensional (2D) and three-dimensional (3D) geometries against benchmark Monte Carlo results for gray media in which the optical thickness was varied over a large range. In all cases, the accuracy of the hybrid method was found to be within a few percent of Monte Carlo results, and comparable to the solutions of the RTE obtained directly using CADOM. Finally, the new hybrid method was explored for 3D nongray media in the presence of reflecting walls and various scattering albedos. As a noteworthy advantage, irrespective of the conditions used, it was always found to be computationally more efficient than standalone CADOM and up to 15 times more efficient than standalone CADOM for optically thick media with strong scattering.

References

1.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
2.
Siegel
,
R.
, and
Howell
,
J.
,
2001
,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor and Francis-Hemisphere
,
London
.
3.
Haji-Sheikh
,
A.
,
1988
, “
Monte Carlo Methods
,”
Handbook of Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
,
G. E.
Schneider
, and
R. H.
Pletcher
, eds.,
Wiley
,
New York
, Chap. 16.
4.
Burns
,
P. J.
, and
Pryor
,
D. V.
,
1998
, “
Surface Radiative Transport at Large Scales via Monte Carlo
,”
Annual Reviews of Heat Transfer
, Vol.
9
,
C. L.
Tien
, ed.,
Begell House
,
New York
, pp.
79
158
.
5.
Mazumder
,
S.
, and
Kersch
,
A.
,
2000
, “
A Fast Monte Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications
,”
Numer. Heat Transfer Part B
,
37
(
2
), pp.
185
199
.10.1080/104077900275486
6.
Nobel
,
J. J.
,
1975
, “
The Zonal Method: Explicit Matrix Relations for Total Exchange Areas
,”
Int. J. Heat Mass Transfer
,
18
(
2
), pp.
261
269
.10.1016/0017-9310(75)90010-1
7.
Yuen
,
W.
, and
Takara
,
E.
,
1994
, “
Development of a General Zonal Method for Analysis of Radiative Transfer in Absorbing and Anisotropically Scattering Media
,”
Numer. Heat Transfer Part B
,
25
, pp.
75
96
.10.1080/10407799408955911
8.
Lockwood
,
F. C.
, and
Shah
,
N. G.
1981
, “
A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh, PA
, pp.
1405
1414
.
9.
Cumber
,
P. S.
,
1995
, “
Improvements to the Discrete Transfer Method of Calculating Radiative Heat Transfer
,”
Int. J. Heat Mass Transfer
,
38
(
12
), pp.
2251
2258
.10.1016/0017-9310(94)00354-X
10.
Fiveland
,
W.
,
1988
, “
Three-Dimensional Radiative Heat Transfer Solutions by the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
2
(
4
), pp.
309
316
.10.2514/3.105
11.
Fiveland
,
W.
, and
Jamaluddin
,
A.
,
1991
, “
Three-Dimensional Spectral Radiative Heat Transfer Solutions by the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
5
(
3
), pp.
335
339
.10.2514/3.268
12.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite-Volume Method for Radiative Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
, pp.
419
425
.10.2514/3.559
13.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
14.
Yang
,
J.
, and
Modest
,
M. F.
,
2007
, “
Elliptic PDE Formulation of General, Three-Dimensional High-Order PN-Approximations for Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
2
), pp.
217
227
.10.1016/j.jqsrt.2006.07.017
15.
Modest
,
M. F.
, and
Yang
,
J.
,
2008
, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
,
109
, pp.
1641
1666
.10.1016/j.jqsrt.2007.12.018
16.
Ravishankar
,
M.
,
Mazumder
,
S.
, and
Kumar
,
A.
,
2010
, “
Finite-Volume Formulation and Solution of the P3 Equations of Radiative Transfer on Unstructured Meshes
,”
ASME J. Heat Transfer
,
132
, p.
023402
.10.1115/1.4000184
17.
Mazumder
,
S.
,
2005
, “
A New Numerical Procedure for Coupling Radiation in Participating Media With Other Modes of Heat Transfer
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
1037
1045
.10.1115/1.1929780
18.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2001
, “
Acceleration of Anisotropic Scattering Computations Using Coupled Ordinates Method (COMET)
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
607
612
.10.1115/1.1370506
19.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S.
,
V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer Part B
,
24
, pp.
373
389
.10.1080/10407799308955899
20.
Coelho
,
P. J.
,
2002
, “
The Role of Ray Effects and False Scattering on the Accuracy of the Standard and Modified Discrete Ordinates Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
, pp.
231
238
.10.1016/S0022-4073(01)00202-3
21.
Tan
,
H.-P.
,
Zhang
,
H.-C.
, and
Zhen
,
B.
,
2004
, “
Estimation of Ray Effect and False Scattering in Approximate Solution Method for Thermal Radiative Transfer Equation
,”
Numer. Heat Transfer Part A
,
46
(
8
), pp.
807
829
.10.1080/104077890504267
22.
Raithby
,
G. D.
,
1999
, “
Discussion of the Finite-Volume Method for Radiation, and Its Application Using 3D Unstructured Meshes
,”
Numer. Heat Transfer Part B
,
35
, pp.
389
405
.10.1080/104077999275802
23.
Hassanzadeh
,
P.
,
Raithby
,
G. D.
, and
Chui
,
E. H.
,
2008
, “
Efficient Calculation of Radiation Heat Transfer in Participating Media
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
129
139
.10.2514/1.33271
24.
Hassanzadeh
,
P.
, and
Raithby
,
G. D.
,
2009
, “
The Efficient Calculation of Radiation Heat Transfer in Anisotropically Scattering Media Using the QL Method
,”
J. Comput. Thermal Sci.
,
1
(
2
), pp.
189
206
.10.1615/ComputThermalScien.v1.i2.50
25.
Baek
,
S. W.
,
Byun
,
D. Y.
, and
Kang
,
S. J.
,
2000
, “
The Combined Monte Carlo and Finite-Volume Method for Radiation in a Two-Dimensional Irregular Geometry
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2337
2344
.10.1016/S0017-9310(99)00288-4
26.
Olfe
,
D. B.
,
1967
, “
A Modification of the Differential Approximation for Radiative Transfer
,”
AIAA J.
,
5
(
4
), pp.
638
643
.10.2514/3.4041
27.
Modest
,
M. F.
,
1989
, “
The Modified Differential Approximation for Radiative Transfer in General Three-Dimensional Media
,”
J. Thermophys. Heat Transfer
,
3
(
3
), pp.
283
288
.10.2514/3.28773
28.
Ravishankar
,
M.
,
Mazumder
,
S.
, and
Sankar
,
M.
,
2010
, “
Application of the Modified Differential Approximation for Radiative Transfer to Arbitrary Geometry
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
, pp.
2052
2069
.10.1016/j.jqsrt.2010.05.020
29.
Murthy
,
J. Y.
, and
Mathur
,
S.
,
1998
, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
313
321
.10.2514/2.6363
30.
Ferziger
,
J.
, and
Peric
,
M.
,
1999
,
Computational Methods for Fluid Dynamics
, 2nd ed.,
Springer
,
Berlin
.
31.
Date
,
A. W.
,
2005
,
Introduction to Computational Fluid Dynamics
,
Cambridge University Press
,
Cambridge
.
32.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
SIAM
,
Philadelphia, PA
.
33.
Mazumder
,
S.
,
2006
, “
Methods to Accelerate Ray Tracing in the Monte Carlo Method for Surface-to-Surface Radiation Transport
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
945
952
.10.1115/1.2241978
34.
Modest
,
M. F.
, and
Sikka
,
K.
,
1992
, “
The Application of the Stepwise-Gray P-1 Approximation to Molecular Gas-Particulate Mixtures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
48
(
2
), pp.
159
162
.10.1016/0022-4073(92)90086-J
You do not currently have access to this content.