In this paper, we propose the use of Si/Ge nanocomposite materials to improve the performance of microthermal actuators. Nanocomposites with a high electrical to thermal conductivity ratio can facilitate a rapid temperature change within a short distance, enabling a high temperature increase in a large region of the actuator beams. The total structural thermal expansion and, consequently, the actuation distance can be increased significantly. A top-down quasi-continuum multiscale model is presented for the computational analysis of nanocomposite based thermal actuators. In the multiscale model, the thermo-mechanical response of the actuator due to Joule heating is modeled using classical continuum theories, while the thermal and electrical properties of doped Si and Si/Ge nanocomposite materials are obtained from atomistic level descriptions. An iterative procedure is carried out between the calculations at the two length scales until a self-consistent solution is obtained. Numerical results indicate that incorporating Si/Ge nanocomposites in thermal actuators can significantly increase their energy efficiency and mechanical performance. In addition, parametric studies show that the size of the nanocomposite region and atomic percentage of the material components have significant effects on the overall performance of the actuators.

References

1.
Comtois
,
J. H.
, and
Bright
,
V. M.
,
1997
, “
Applications for Surface-Micromachined Polysilicon Thermal Actuators and Arrays
,”
Sens. Actuators, A
,
58
, pp.
19
25
.10.1016/S0924-4247(97)80220-8
2.
Que
,
L.
,
Park
,
J.-S.
, and
Gianchandani
,
Y. B.
,
2001
, “
Bent-Beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices
,”
J. Microelectromech. Syst.
,
10
(
2
), pp.
247
254
.10.1109/84.925771
3.
Huang
,
Q.-A.
, and
Lee
,
N. K. S.
,
1999
, “
Analysis and Design of Polysilicon Thermal Flexure Actuator
,”
J. Micromech. Microeng.
,
9
(
1
), pp.
64
70
.10.1088/0960-1317/9/1/308
4.
Hickey
,
R.
,
Kujath
,
M.
, and
Hubbard
,
T.
,
2002
, “
Heat Transfer Analysis and Optimization of Two-Beam Microelectromechanical Thermal Actuators
,”
J. Vac. Sci. Technol. A
,
20
, pp.
971
974
.10.1116/1.1468654
5.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
6577
-
6627
.10.1016/S0045-7825(01)00251-1
6.
Yan
,
D.
,
Khajepour
,
A.
, and
Mansour
,
R.
,
2004
, “
Design and Modeling of a MEMS Bidirectional Vertical Thermal Actuator
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
841
850
.10.1088/0960-1317/14/7/002
7.
Chen
,
S. C.
, and
Culpepper
,
M. L.
,
2006
, “
Design of Contoured Microscale Thermomechanical Actuators
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1226
1234
.10.1109/JMEMS.2006.879692
8.
Sassen
,
W. P.
,
Henneken
,
V. A.
,
Tichem
,
M.
, and
Sarro
,
P. M.
,
2008
, “
Contoured Thermal V-Beam Actuator With Improved Temperature Uniformity
,”
Sens. Actuators, A
,
144
(
2
), pp.
341
347
.10.1016/j.sna.2008.02.003
9.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl.Phys.
,
74
(
1
), pp.
31
39
.10.1063/1.354111
10.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
11.
Yang
,
R.
, and
Chen
,
G.
,
2004
, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
,
69
, p.
195316
.10.1103/PhysRevB.69.195316
12.
Minnich
,
A. J.
,
Lee
,
H.
,
Wang
,
X. W.
,
Joshi
,
G.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
,
Chen
,
G.
, and
Vashaee
,
D.
,
2009
, “
Modeling Study of Thermoelectric SiGe Nanocomposites
,”
Phys. Rev. B
,
80
(
15
), p.
155327
.10.1103/PhysRevB.80.155327
13.
Xie
,
W.
,
He
,
J.
,
Kang
,
H. J.
,
Tang
,
X.
,
Zhu
,
S.
,
Laver
,
M.
,
Wang
,
S.
,
Copley
,
J. R. D.
,
Brown
,
C. M.
,
Zhang
,
Q.
, and
Tritt
,
T. M.
,
2010
, “
Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2Te3 Nanocomposites
,”
Nano Lett.
,
10
(
9
), pp.
3283
3289
.10.1021/nl100804a
14.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Comprehensive Thermal Modelling and Characterization of an Electro-Thermal-Compliant Microactuator
,”
J. Micromech. Microeng.
,
11
(
5
), p.
452
462
.10.1088/0960-1317/11/5/303
15.
Zhao
,
H.
,
Tang
,
Z.
,
Li
,
G.
, and
Aluru
,
N. R.
,
2006
, “
Quasiharmonic Models for the Calculation of Thermodynamic Properties of Crystalline Silicon Under Strain
,”
J. Appl.Phys.
,
99
(
6
), p.
064314
.10.1063/1.2185834
16.
Tang
,
Z.
,
Zhao
,
H.
,
Li
,
G.
, and
Aluru
,
N. R.
,
2006
, “
Finite-Temperature Quasicontinuum Method for Multiscale Analysis of Silicon Nanostructures
,”
Phys. Rev. B
,
74
(
6
), p.
064110
.10.1103/PhysRevB.74.064110
17.
Guckel
,
H.
,
Klein
,
J.
,
Christenson
,
T.
,
Skrobis
,
K.
,
Laudon
,
M.
, and
Lovell
,
E. G.
,
1992
, “
Thermo-Magnetic Metal Flexure Actuators
,”
5th Technical Digest
,
IEEE Solid-State Sensor and Actuator Workshop
, pp.
73
75
.
18.
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2009
, “
Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects
,”
Energy Environ.Sci
,
2
(
5
), pp.
466
479
.10.1039/b822664b
19.
Wang
,
X. W.
,
Lee
,
H.
,
Lan
,
Y. C.
,
Zhu
,
G. H.
,
Joshi
,
G.
,
Wang
,
D. Z.
,
Yang
,
J.
,
Muto
,
A. J.
,
Tang
,
M. Y.
,
Klatsky
,
J.
,
Song
,
S.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2008
, “
Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy
,”
Appl. Phys. Lett.
,
93
, p.
193121
.10.1063/1.3027060
20.
Dresselhaus
,
M. S.
,
Chen
,
G.
,
Tang
,
M. Y.
,
Yang
,
R.
,
Lee
,
H.
,
Wang
,
D.
,
Ren
,
Z.
,
Fleurial
,
J.-P.
, and
Gogna
,
P.
,
2007
, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Maters
,
19
(
8
), pp.
1043
1053
.10.1002/adma.200600527
21.
Sniegowski
,
J. J.
, and
de Boer
,
M. P.
,
2000
, “
IC-Compatible Polysilicon Surface Micromachining
,”
Ann. Rev. Mater. Sci.
,
30
, pp.
299
333
.10.1146/annurev.matsci.30.1.299
22.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.10.1016/0022-5096(63)90060-7
23.
Hill
,
R.
,
1965
, “
Theory of Mechanical Properties of Fibre-Strengthened Materials—III: Self-Consistent Model
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
189
198
.10.1016/0022-5096(65)90008-6
24.
Walpole
,
L. J.
,
1969
, “
On the Overall Elastic Moduli of Composite Materials
,”
J. Mech. Phys. Solids
,
17
(
4
), pp.
235
251
.10.1016/0022-5096(69)90014-3
25.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
26.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1992
, “
Mori-Tanaka Estimates of the Overall Elastic Moduli of Certain Composite Materials
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
539
546
.10.1115/1.2893757
27.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
,
1991
, “
On Diagonal and Elastic Symmetry of the Approximate Effective Stiffness Tensor of Heterogeneous Media
,”
J. Mech. Phys. Solids
,
39
(
7
), pp.
927
946
.10.1016/0022-5096(91)90012-D
28.
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1992
, “
On Transformation Strains and Uniform Fields in Multiphase Elastic Media
,”
Proc. R. Soc. London, Ser. A
,
437
(
1900
), pp.
291
310
.10.1098/rspa.1992.0062
29.
Reiter
,
T.
,
Dvorak
,
G. J.
, and
Tvergaard
,
V.
,
1997
, “
Micromechanical Models for Graded Composite Materials
,”
J. Mech. Phys. Solids
,
45
(
8
), pp.
1281
1302
.10.1016/S0022-5096(97)00007-0
30.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fibre-Strengthened Materials: I. Elastic Behaviour
,”
J. Mech. Phys. Solids
,
12
(
4
), pp.
199
212
.10.1016/0022-5096(64)90019-5
31.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
, pp.
153
156
.10.1063/1.1713863
32.
Ono
,
N.
,
Kitamura
,
K.
,
Nakajima
,
K.
, and
Shimanuki
,
Y.
,
2000
, “
Measurement of Young's Modulus of Silicon Single Crystal at High Temperature and Its Dependency on Boron Concentration Using the Flexural Vibration Method
,”
Jpn. J. Appl. Phys., Part 1
,
39
(
2A
), pp.
368
371
.10.1143/JJAP.39.368
33.
Gladden
,
J. R.
,
Li
,
G.
,
Adebisi
,
R.
,
Firdosy
,
S.
,
Caillat
,
T.
, and
Ravi
,
V.
,
2010
, “
High-Temperature Elastic Moduli of Bulk Nanostructured n- and p-Type Silicon Germanium
,”
Phys. Rev. B
,
82
(
4
), p.
045209
.10.1103/PhysRevB.82.045209
34.
Reiter
,
T.
, and
Dvorak
,
G. J.
,
1998
, “
Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,”
J. Mech. Phys. Solids
,
46
(
9
), pp.
1655
1673
.10.1016/S0022-5096(97)00039-2
35.
Slack
,
G. A.
, and
Bartram
,
S. F.
,
1975
, “
Thermal Expansion of Some Diamondlike Crystals
,”
J. Appl. Phys.
,
46
(
1
), pp.
89
98
.10.1063/1.321373
36.
Okada
,
Y.
, and
Tokumaru
,
Y.
,
1984
, “
Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon Between 300 and 1500 K
,”
J. Appl. Phys.
,
56
(
2
), pp.
314
320
.10.1063/1.333965
37.
Reeber
,
R. R.
, and
Wang
,
K.
,
1996
, “
Thermal Expansion and Lattice Parameters of Group IV Semiconductors
,”
Mater. Chem. Phys.
,
46
(
2–3
), pp.
259
264
.10.1016/S0254-0584(96)01808-1
38.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
Oxford
.
39.
Picu
,
R. C.
,
Borca-Tasciuc
,
T.
, and
Pavel
,
M. C.
,
2003
, “
Strain and Size Effects on Heat Transport in Nanostructures
,”
J. Appl. Phys.
,
93
(
6
), pp.
3535
3539
.10.1063/1.1555256
40.
Xu
,
Y.
, and
Li
,
G.
,
2009
, “
Strain Effect Analysis on Phonon Thermal Conductivity of Two-Dimensional Nanocomposites
,”
J. Appl. Phys.
,
106
(
11
), p.
114302
.10.1063/1.3259383
41.
Born
,
M.
, and
Huang
,
K.
,
1954
,
Dynamical Theory of Crystal Lattices
,
Clarendon
,
Oxford
.
42.
Slack
,
G. A.
,
1979
, “
The Thermal Conductivity of Nonmetallic Crystals
,”
Solid State Phys.
,
34
, pp.
1
71
.10.1016/S0081-1947(08)60359-8
43.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
7
16
.10.1115/1.2910673
44.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
, pp.
112
132
.10.1016/j.probengmech.2005.07.007
45.
Rieger
,
M. M.
, and
Vogl
,
P.
,
1993
, “
Electronic-Band Parameters in Strained Si1−xGex Alloys on Si1−yGey Substrates
,”
Phys. Rev. B
,
48
, pp.
14276
14287
.10.1103/PhysRevB.48.14276
46.
Ravich
,
Y. I.
,
Efimova
,
B. A.
, and
Tamarchenko
,
V. I.
,
1971
, “
Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides
,”
Phys. Status Solidi B
,
43
, pp.
11
33
.10.1002/pssb.2220430102
47.
Levinshtein
,
M. E.
,
Rumyantsev
,
S. L.
, and
Shur
,
M. S.
, eds.,
2001
,
Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
,
John Wiley & Sons
,
New York
, pp.
149
187
.
48.
Zawadzki
,
W.
, and
Szymanska
,
W.
,
1971
, “
Elastic Electron Scattering in InSb-Type Semiconductors
,”
Phys. Status Solidi B
,
45
, pp.
415
432
.10.1002/pssb.2220450206
49.
Lundstrom
,
M.
,
2000
,
Fundamentals of Carrier Transport
,
Cambridge University Press
,
Cambridge, UK
.
50.
Dismukes
,
J. P.
,
Ekstrom
,
L.
,
Steigmeier
,
E. F.
,
Kudman
,
I.
, and
Beers
,
D. S.
,
1964
, “
Thermal and Electrical Properties of Heavily Doped Ge-Si Alloys Up to 1300 °K
,”
J. Appl. Phys.
,
35
(
10
), pp.
2899
2907
.10.1063/1.1713126
You do not currently have access to this content.