A boundary layer analysis that has been presented for the heat and mass transfer in power-law nanofluids over a stretching surface with convective boundary condition are investigated numerically. The surface nanoparticle concentration is kept constant. A power-law model is used for non-Newtonian fluids, whereas Brownian motion and thermophoresis effects are incorporated in the nanofluid model. A similarity transformation is used to reduce mass, momentum, thermal energy, and nanoparticles concentration equations into nonlinear ordinary differential equations which are solved numerically by using a finite difference method. The effects of nanofluid parameters, suction/injection, and convective parameters and generalized Pr and Le numbers on dimensionless functions, skin friction, local Nusselt, and Sherwood numbers are shown graphically. The quantitative comparison of skin friction and heat transfer rates with the published results for special cases is shown in tabular form and is found in good agreement.

References

References
1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys
.,
21
, pp.
645
647
.10.1007/BF01587695
2.
Lakshmisha
,
K. N.
,
Venkateswaran
,
S.
, and
Nath
,
G.
,
1988
, “
Three-Dimensional Unsteady Flow With Heat and Mass Transfer Over a Continuous Stretching Surface
,”
ASME J. Heat Transfer
,
110
, pp.
590
595
.10.1115/1.3250533
3.
Wang
,
C. Y.
,
1984
, “
The Three-Dimensional Flow Due to a Stretching Flat Surface
,”
Phys. Fluids
,
27
, pp.
1915
1917
.10.1063/1.864868
4.
Andersson
,
H. I.
, and
Dandapat
,
B. S.
,
1991
, “
Flow of a Power-Law Fluid Over a Stretching Sheet
,”
Stability and Applied Analysis of Continuous Media
,
1
, pp.
339
347
.
5.
Magyari
,
E.
, and
Keller
,
B.
,
2000
, “
Exact Solutions for Self-Similar Boundary-Layer Flows Induced by Permeable Stretching Walls
,”
Eur. J. Mech. B/Fluids
,
19
, pp.
109
122
.10.1016/S0997-7546(00)00104-7
6.
Velggaar
,
J.
,
1977
, “
Laminar Boundary Layer Behavior on Continuous Accelerating Surfaces
,”
Chem. Eng. Sci.
,
32
, pp.
1517
1525
.10.1016/0009-2509(77)80249-2
7.
Wang
,
C. Y.
,
1989
, “
Free Convection on a Vertical Stretching Surface
,”
Z. Angew. Math. Mech.
,
69
, pp.
418
420
.10.1002/zamm.19890691115
8.
Tsou
,
F.
,
Sparrow
,
E.
, and
Goldstein
,
R. J.
,
1967
, “
Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface
,”
Int. J. Heat Mass Transfer
,
10
, pp.
219
235
.10.1016/0017-9310(67)90100-7
9.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
10.
Grubka
,
L. J.
, and
Bobba
,
K. M.
,
1985
,
“Heat Transfer Characteristics of a Continuous Stretching Surface With Variable Temperature,”
ASME J. Heat Transfer
,
107
, pp.
248
250
.10.1115/1.3247387
11.
Hassanien
,
I. A.
, and
Gorla
,
R. S. R.
,
1990
, “
Heat Transfer to a Micropolar Fluid From a Nonisothermal Stretching Sheet With Suction and Blowing
,”
Acta Mech.
,
84
, pp.
191
201
.10.1007/BF01176097
12.
Gorla
,
R. S. R.
, and
Sidawi
,
I.
,
1994
, “
Free Convection on a Vertical Stretching Surface With Suction and Blowing
,”
Appl. Sci. Res.
,
52
(
3
), pp.
247
257
.10.1007/BF00853952
13.
Hassanien
,
I. A.
,
Abdullah
,
A. A.
, and
Gorla
,
R. S. R.
,
1998
, “
Flow and Heat Transfer in a Power-Law Fluid Over a Nonisothermal Stretching Sheet
,”
Math. Comput. Modell
.,
28
(
9
), pp.
105
116
. 10.1016/S0895-7177(98)00148-4
14.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.10.1115/1.2150834
15.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Thermal Sci.
,
49
(
2
), pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
16.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2477
2483
.10.1016/j.ijheatmasstransfer.2010.01.032
17.
Vajravelu
,
K.
,
Prasad
,
K. V.
,
Lee
,
J.
,
Lee
,
C.
,
Pop
,
I.
, and
Van Gorder
,
R. A.
,
2011
, “
Convective Heat Transfer in the Flow of Viscous Ag–Water and Cu–Water Nanofluids Over a Stretching Surface
,”
Int. J. Thermal Sci.
,
50
(
5
), pp.
843
851
.10.1016/j.ijthermalsci.2011.01.008
18.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2011
, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With a Convective Boundary Condition
,”
Int. J. Thermal Sci.
,
50
(
7
), pp.
1326
-
1332
.10.1016/j.ijthermalsci.2011.02.019
19.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
,
2008
, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Powder Technol.
,
183
(
1
), pp.
63
72
.10.1016/j.powtec.2007.11.014
20.
Ding
,
Y.
,
Chen
,
H.
,
He
,
Y.
,
Lapkin
,
A.
,
Yeganeh
,
M.
,
Siller
,
L.
, and
Butenko
,
Y. V.
,
2007
,
“Forced Convective Heat Transfer of Nanofluids,”
Adv. Powder Technol.
,
18
(
6
), pp.
813
824
.10.1163/156855207782515021
21.
Ding
,
Y.
,
Chen
,
H.
,
Musina
,
Z.
,
Jin
,
Y.
,
Zhang
,
T.
,
Witharana
,
S.
, and
Yang
,
W.
,
2010
, “
Relationship Between the Thermal Conductivity and Shear Viscosity of Nanofluids
,”
Phys. Scr.
,
T139
, p.
014078
.10.1088/0031-8949/2010/T139/014078
22.
Chen
,
H.
,
Ding
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Nanofluids
,”
New J. Phys.
,
9
(
10
), p.
367
.10.1088/1367-2630/9/10/367
23.
He
,
Y.
,
Men
,
Y.
,
Liu
,
X.
,
Lu
,
H.
,
Chen
,
H.
, and
Ding
,
Y.
,
2009
, “
Study on Forced Convective Heat Transfer of Non-Newtonian Nanofluids
,”
Int. J. Thermal Sci.
,
18
(
1
), pp.
20
26
.10.1007/s11630-009-0020-x
You do not currently have access to this content.