Decomposing composites undergo both surface removal and in-depth decomposition, when they are subjected to severe heating environments. As a result, the gas phase and the chemical species are injected into the boundary layer, resulting in a reduction of the heat flux entering into the solid structure. Under such conditions that geometry changes, the reconstruction of heat flux at the ablating front is quite complicated. Utilizing a procedure based on the sequential function specification method, an inverse problem is solved to anticipate the front-surface heating condition. Temperature measurements as well as measurement of the position of the ablating surface accompanied with additive noises are used for the implementation of the current procedure. Taking into account a complex set of phenomena, a numerical experiment is employed to examine the accuracy and appropriateness of the proposed technique for such problems. The results obtained demonstrate the usefulness and efficiency of the proposed method for the estimation of heat flux at the moving boundary of decomposing materials.

References

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
,
1985
,
Inverse Heat Conduction
,
Wiley
,
New York
.
2.
Molavi
,
H.
,
Hakkaki-Fard
,
A.
,
Pourshaban
,
I.
,
Mahbubi Fard
,
M.
, and
Rahmani
,
R. K.
,
2009
, “
Estimation of Temperature-Dependent Thermophysical Properties of Noncharring Ablators
,”
J. Thermophys. Heat Transfer
,
23
, pp.
50
58
.10.2514/1.38432
3.
Molavi
,
H.
,
Pourshaban
,
I.
,
Hakkaki-Fard
,
A.
,
Molavi
,
M.
,
Ayasoufi
,
A.
, and
Rahmani
,
R. K.
,
2009
, “
Inverse Identification of Thermal Properties of Charring Ablators
,”
Numer. Heat Transfer, Part B
,
56
, pp.
478
501
.10.1080/10407790903508129
4.
Molavi
,
H.
,
Hakkaki-Fard
,
A.
,
Rahmani
,
R. K.
,
Ayasoufi
,
A.
, and
Molavi
,
M.
,
2010
, “
A Novel Methodology for Combined Parameter and Function Estimation Problems
,”
ASME J. Heat Transfer
,
132
, p.
121301
.10.1115/1.4002283
5.
Molavi
,
H.
,
Rahmani
,
R. K.
,
Pourshaghaghy
,
A.
,
Tashnizi
,
E. S.
, and
Hakkaki-Fard
,
A.
,
2010
, “
Heat Flux Estimation in a Nonlinear Inverse Heat Conduction Problem With Moving Boundary
,”
ASME J. Heat Transfer
,
132
, p.
081301
.10.1115/1.4001305
6.
Molavi
,
H.
,
Hakkaki-Fard
,
A.
,
Molavi
,
M.
,
Rahmani
,
R. K.
,
Ayasoufi
,
A.
, and
Noori
,
S.
,
2011
, “
Estimation of Boundary Conditions in the Presence of Unknown Moving Boundary Caused by Ablation
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1030
1038
.10.1016/j.ijheatmasstransfer.2010.11.035
7.
Lamm
, P.
K.
,
1995
, “
Future-Sequential Regularization Methods for Ill-Posed Volterra Equations: Applications to the Inverse Heat Conduction Problem
,”
J. Math. Anal. Appl.
,
195
, pp.
469
494
.10.1006/jmaa.1995.1368
8.
Beck
,
J. V.
,
1970
, “
Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
13
, pp.
703
716
.10.1016/0017-9310(70)90044-X
9.
Beck
,
J. V.
,
Litkouhi
,
B.
, and
St. Clair
,
C. R.
,
1982
, “
Efficient Sequential Solution of the Nonlinear Inverse Heat Conduction Problem
,”
Numer. Heat Transfer
,
5
, pp.
275
286
.10.1080/10407788208913448
10.
Osman
,
A. M.
, and
Beck
,
J. V.
,
1990
, “
Investigation of Transient Heat Transfer Coefficients in Quenching Experiments
,”
ASME J. Heat Transfer
,
112
, pp.
843
848
.10.1115/1.2910490
11.
Blanc
,
G.
,
Beck
,
J. V.
, and
Raynaud
,
M.
,
1997
, “
Solution of the Inverse Heat Conduction Problem With a Time-Variable Number of Future Temperatures
,”
Numer. Heat Transfer, Part B
,
32
, pp.
437
451
.10.1080/10407799708915018
12.
Yang
,
C. Y.
,
1998
, “
Inverse Estimation of Mix-Typed Boundary Conditions in Heat Conduction Problems
,”
J. Thermophys. Heat Transfer
,
12
, pp.
552
561
.10.2514/2.6375
13.
Chantasiriwan
,
S.
,
1999
, “
Comparison of Three Sequential Function Specification Algorithms for the Inverse Heat Conduction Problem
,”
Int. Commun. Heat Mass Transfer
,
26
, pp.
115
124
.10.1016/S0735-1933(98)00127-4
14.
Chantasiriwan
,
S.
,
1999
, “
Inverse Heat Conduction Problem of Determining Time-Dependent Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
42
, pp.
4275
4285
.10.1016/S0017-9310(99)00094-0
15.
Lin
,
S. M.
,
Chen
,
C. K.
, and
Yang
,
Y. T.
,
2004
, “
A Modified Sequential Approach for Solving Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2669
2680
.10.1016/j.ijheatmasstransfer.2003.11.027
16.
Özisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer Fundamentals and Applications
,
Taylor and Francis
,
New York
.
17.
Amar
,
A. J.
,
2006
, “
Modeling of One-Dimensional Ablation With Porous Flow Using Finite Control Volume Procedure
,”
Ph.D. thesis
,
Department of Aerospace Engineering, North Carolina State University
,
Raleigh, NC
.
18.
Noffz
,
G. K.
, and
Bowman
,
M. P.
,
1996
, “
Design and Laboratory Validation of a Capacitive Sensor for Measuring the Recession of a Thin-Layered Ablator
,” NASA Technical Memorandum No. 4777.
19.
Moyer
,
C. B.
, and
Rindal
,
R. A.
,
1968
, “
An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator. Part II–Finite Difference Solution for the In-Depth Response of Charring Materials Considering Surface Chemical and Energy Balances
,” Report No. NASA-CR-1061.
20.
Chen
,
Y.-K.
, and
Milos
,
F. S.
,
1999
, “
Ablation and Thermal Response Program for Spacecraft Heatshield Analysis
,”
J. Spacecr. Rockets
,
36
, pp.
475
483
.10.2514/2.3469
21.
Osman
,
A. M.
,
Dowding
,
K. J.
, and
Beck
,
J. V.
,
1997
, “
Numerical Solution of the General Two-Dimensional Inverse Heat Conduction Problem (IHCP)
,”
ASME J. Heat Transfer
,
119
, pp.
38
45
.10.1115/1.2824098
22.
Potts
,
R. L.
,
1990
, “
Hybrid Integral/Quasi-Steady Solution of Charring Ablation
,”
AIAA/ASME 5th Joint Thermophysics and Heat Transfer Conference
,
Seattle, WA
,
AIAA Paper No. 90-1677
.
You do not currently have access to this content.