Nonthermal irreversible electroporation (NTIRE) is an new minimally invasive tissue ablation modality that uses high electric field pulses to produce irreversible permeation of the cell membrane (irreversible electroporation) while avoiding thermal damage and is applied to treat malignant tumors. This paper describes efforts to develop NTIRE as a new minimally invasive treatment modality for uveal melanoma, the most common primary intraocular malignancy in adults, and other ocular malignancies. The paper deals with a 3D mathematical simulation model of the eye that employs the simultaneous solution to the electric field equation and to the Pennes bioheat equation to predict the electric field in the eye as well as the rise in eye temperature in response to the application of a high power electric pulse. Treatment efficacy was defined as the fraction of tumor volume in which the electric field exceeded a predefined target field and treatment safety was calculated by the ratio of the electric field in the tumor to the electric field in the vitreous humor or in the macula. Results show that treatment efficacy and safety are criteria that can be used to optimize the NTIRE treatment protocol.

References

1.
Davalos
,
R. V.
,
Mir
,
I. L.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.10.1007/s10439-005-8981-8
2.
Miller
,
L.
,
Leor
,
J.
, and
Rubinsky
,
B.
,
2005
, “
Cancer Cells Ablation With Irreversible Electroporation
,”
Technol. Cancer Res. Treat.
,
4
(
6
), pp.
699
705
. Available at http://www.tcrt.org/c3022/c4191/Cancer-Cells-Ablation-with-Irreversible-Electroporation-p-699-706-p13212.html
3.
Edd
,
J. F.
,
Horowitz
,
L.
,
Davalos
,
R. V.
,
Mir
,
L. M.
, and
Rubinsky
,
B.
,
2006
, “
In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1409
1415
.10.1109/TBME.2006.873745
4.
Miklavcic
,
D.
,
Semrov
,
D.
,
Mekid
,
H.
, and
Mir
,
L. M.
,
2000
, “
A Validated Model of In Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy
,”
Biochim. Biophys. Acta
,
1523
(
1
), pp.
73
83
.10.1016/S0304-4165(00)00101-X
5.
Al-Sakere
,
B.
,
Andre
,
F.
,
Bernat
,
C.
,
Connault
,
E.
,
Opolon
,
P.
,
Davalos
,
R. V.
,
Rubinsky
,
B.
, and
Mir
,
L. M.
,
2007
, “
Tumor Ablation With Irreversible Electroporation
,”
PLoS ONE
,
2
(
11
), p.
e1135
.10.1371/journal.pone.0001135
6.
Lavee
,
J.
,
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
,
2007
, “
A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation
,”
Heart Surg. Forum
,
10
(
2
), pp.
E162
E167
.10.1532/HSF98.20061202
7.
Maor
,
E.
,
Ivorra
,
A.
,
Leor
,
J.
, and
Rubinsky
,
B.
,
2007
, “
The Effect of Irreversible Electroporation on Blood Vessels
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
307
312
. Available at http://www.tcrt.org/The-Effect-of-Irreversible-Electroporation-on-Blood-Vessels-p-307-312-p16030.html
8.
Maor
,
E.
,
Ivorra
,
A.
, and
Rubinsky
,
B.
,
2009
, “
Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation
,”
PLoS One
,
4
(
3
), p.
e4757
.10.1371/journal.pone.0004757
9.
Lee
,
R. C.
, and
Despa
,
F.
,
2005
, “
Distinguishing Electroporation from Thermal Injuries in Electrical Shock by MR Imaging
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
6
, pp.
6544
6546
.10.1109/IEMBS.2005.1615999
10.
Becker
,
S.
M.
, and
Kuznetsov
,
A. V.
,
2006
, “
Numerical Modeling of In Vivo Plate Electroporation Thermal Dose Assessment
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
76
84
.10.1115/1.2132375
11.
Becker
,
S.
M.
, and
Kuznetsov
,
A. V.
,
2007
, “
Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
712
721
.10.1115/1.2768380
12.
Becker
,
S.
M.
, and
Kuznetsov
,
A. V.
,
2007
, “
Thermal Damage Reduction Associated With In Vivo Skin Electroporation: A Numerical Investigation Justifying Aggressive Pre-Cooling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
105
116
.10.1016/j.ijheatmasstransfer.2006.06.030
13.
Becker
,
S.
M.
, and
Kuznetsov
,
A. V.
,
2007
, “
Numerical Assessment of Thermal Response Associated With In Vivo Skin Electroporation: The Importance of the Composite Skin Model
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
330
340
.10.1115/1.2720910
14.
Davalos
,
R. V.
,
Rubinsky
,
B.
, and
Mir
,
L. M.
,
2003
, “
Theoretical Analysis of the Thermal Effects During In Vivo Tissue Electroporation
,”
Bioelectrochemistry
,
61
(
1–2
), pp.
99
107
.10.1016/j.bioelechem.2003.07.001
15.
Mandel
,
Y.
,
Pe'er
,
J.
,
Frenkel
,
S.
, and
Rubinsky
,
B.
,
2009
, “
Planning Treatment of Uveal Melanoma by Irreversible Electroporation Using Finite Element Model
,”
Invest. Ophthalmol. Vis. Sci. 2009 50: E-Abstract 5754, ARVO Annual Meeting 2009
.
16.
Damato
,
B.
, and
Lecuona
,
K.
,
2004
, “
Conservation of Eyes With Choroidal Melanoma by a Multimodality Approach to Treatment: An Audit of 1632 Patients
,”
Ophthalmology
,
111
(
5
), pp.
977
983
.10.1016/j.ophtha.2003.09.028
17.
Damato
,
B.
, and
Jones
,
A. G.
,
2005
, “
Uveal Melanoma: Resection Techniques
,”
Ophthalmol. Clin. North Am.
,
18
(
1
), pp.
119
128
.10.1016/j.ohc.2004.08.010
18.
Damato
,
B.
,
2004
, “
Developments in the Management of Uveal Melanoma
,”
Clin. Experiment Ophthalmol.
,
32
(
6
), pp.
639
647
.10.1111/j.1442-9071.2004.00917.x
19.
Shafahi
,
M.
, and
Vafai
,
K.
,
2011
, “
Human Eye Response to Thermal Disturbances
,”
ASME J. Heat Transfer
,
133
, p.
011009
.10.1115/1.4002360
20.
Charles
,
M. W.
, and
Brown
,
N.
,
1975
, “
Dimensions of the Human Eye Relevant to Radiation Protection
,”
Phys. Med. Biol.
,
20
(
2
), pp.
202
218
.10.1088/0031-9155/20/2/002
21.
Duke-Elder
,
S.
, and
Wybar
,
K.
,
1961
,
System of Ophthalmology
, Vol.
II
,
Henry Kimpton
,
London
.
22.
Becker
,
S. M.
,
2011
, “
Skin Electroporation With Passive Transdermal Transport Theory: A Review and a Suggestion for Future Numerical Model Development
,”
ASME J. Heat Transfer
,
133
(
1
), p.
011011
.10.1115/1.4002362
23.
Chizmadzhev
,
Y. A.
,
Indenbom
,
A. V.
,
Kuzmin
,
P. I.
,
Galichenko
,
S. V.
,
Weaver
,
J. C.
, and
Potts
,
R. O.
,
1998
, “
Electrical Properties of Skin at Moderate Voltages: Contribution of Appendageal Macropores
,”
Biophys, J.
,
74
(
2
, Part 1), pp.
843
856
.10.1016/S0006-3495(98)74008-1
24.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
. Available at http://jap.physiology.org/content/85/1/5.long
25.
Lagendijk
,
J. J.
,
1982
, “
A Mathematical Model to Calculate Temperature Distributions in Human and Rabbit Eyes During Hyperthermic Treatment
,”
Phys. Med. Biol.
,
27
(
11
), pp.
1301
1311
.10.1088/0031-9155/27/11/001
26.
Ng
,
E. Y.
, and
Ooi
,
E. H.
,
2006
, “
FEM Simulation of the Eye Structure With Bio-Heat Analysis
,”
Comput. Methods Programs Biomed.
,
82
(
3
), pp.
268
276
.10.1016/j.cmpb.2006.04.001
27.
Scott
,
J. A.
,
1988
, “
A Finite Element Model of Heat Transport in the Human Eye
,”
Phys. Med. Biol.
,
33
(
2
), pp.
227
241
.10.1088/0031-9155/33/2/003
28.
Colodetti
,
L.
,
Weiland
,
J. D.
,
Colodetti
,
S.
,
Ray
,
A.
,
Seiler
,
M. J.
,
Hinton
,
D. R.
, and
Humayun
,
M. S.
,
2007
, “
Pathology of Damaging Electrical Stimulation in the Retina
,”
Exp. Eye Res.
,
85
(
1
), pp.
23
33
.10.1016/j.exer.2007.02.014
29.
Butterwick
,
A.
,
Vankov
,
A.
,
Huie
,
P.
,
Freyvert
,
Y.
, and
Palanker
,
D.
,
2007
, “
Tissue Damage by Pulsed Electrical Stimulation
,”
IEEE Trans. Biomed. Eng.
,
54
(
12
), pp.
2261
2267
.10.1109/TBME.2007.908310
30.
Andreuccetti
,
D.
,
Fossi
,
R.
, and
Petrucci
,
C.
,
1997
Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz
,” An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz, http://niremf.ifac.cnr.it/tissprop/
31.
Gabriel
,
C.
,
Sheppard
,
R. J.
, and
Grant
,
E. H.
,
1983
, “
Dielectric Properties of Ocular Tissues at 37 Degrees C
,”
Phys. Med. Biol.
,
28
(
1
), pp.
43
49
.10.1088/0031-9155/28/1/004
32.
Gabriel
,
S.
,
Lau
,
R. W.
, and
Gabriel
,
C.
,
1996
, “
The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2271
2293
.10.1088/0031-9155/41/11/003
33.
Emery
,
A. F.
,
Kramar
,
P.
,
Guy
,
A. W.
, and
Lin
,
J. C.
,
1975
, “
Microwave Induced Temperature Rises in Rabbit Eyes in Cataract Research
,”
ASME J. Heat Transfer
,
97
, pp.
123
128
.10.1115/1.3450259
34.
Cicekli
,
U.
,
2003
, “
Computational Model for Heat Transfer in the Human Eye Using the Finite Element Method
,” Ph.D. thesis, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge.
35.
Harting
,
F.
, and
Pfeiffenberger
,
U.
,
1982
, “
Thermal Conductivity of Bovine and Pig Retina: An Experimental Study
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
,
219
(
6
), pp.
290
291
.10.1007/BF00231416
36.
Mandel
,
Y.
,
2011
, “
Pulsed Electric Field and Electroporation in the Eye
,” Ph.D. thesis, Hebrew University, Jerusalem.
37.
Kocak
,
I.
,
Orgul
,
S.
, and
Flammer
,
J.
,
1999
, “
Variability in the Measurement of Corneal Temperature Using a Noncontact Infrared Thermometer
,”
Ophthalmologica
,
213
(
6
), pp.
345
349
.10.1159/000027452
38.
Fujishima
,
H.
,
Toda
,
I.
,
Yamada
,
M.
,
Sato
,
N.
, and
Tsubota
,
K.
,
1996
, “
Corneal Temperature in Patients With Dry Eye Evaluated by Infrared Radiation Thermometry
,”
Br. J. Ophthalmol.
,
80
(
1
), pp.
29
32
.10.1136/bjo.80.1.29
39.
Kourlas
,
H.
, and
Abrams
,
P.
,
2007
, “
Ranibizumab for the Treatment of Neovascular Age-Related Macular Degeneration: A Review
,”
Clin, Ther.
,
29
(
9
), pp.
1850
1861
.10.1016/j.clinthera.2007.09.008
40.
Lemley
,
C. A.
, and
Han
,
D. P.
,
2007
, “
Endophthalmitis: A Review of Current Evaluation and Management
,”
Retina
,
27
(
6
), pp.
662
680
.10.1097/IAE.0b013e3180323f96
41.
Rubinsky
,
J.
,
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
,
2008
, “
Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation
,”
J. Urol.
,
180
(
6
), pp.
2668
2674
.10.1016/j.juro.2008.08.003
42.
Rubinsky
,
B.
,
Onik
,
G.
, and
Mikus
,
P.
,
2007
, “
Irreversible Electroporation: A New Ablation Modality–Clinical Implications
,”
Technol. Cancer Res. Treat.
,
6
(
1
), pp.
37
48
. Available at http://www.tcrt.org/c3029/c4222/Irreversible-Electroporation-A-New-Ablation-Modality-Clinical-Implications-p-37–48-p15542.html
43.
Vest
,
J. A.
,
Seiler
,
J.
, and
Stevenson
,
W. G.
,
2008
, “
Clinical Use of Cooled Radiofrequency Ablation
,”
J. Cardiovasc. Electrophysiol.
,
19
(
7
), pp.
769
773
.10.1111/j.1540-8167.2008.01193.x
44.
Ivorra
,
A.
,
Al-Sakere
,
B.
,
Rubinsky
,
B.
, and
Mir
,
L. M.
,
2009
, “
In Vivo Electrical Conductivity Measurements During and After Tumor Electroporation: Conductivity Changes Reflect the Treatment Outcome
,”
Phys. Med. Biol.
,
54
(
19
), pp.
5949
5963
.10.1088/0031-9155/54/19/019
45.
Sel
,
D.
,
Cukjati
,
D.
,
Batiuskaite
,
D.
,
Slivnik
,
T.
,
Mir
,
L. M.
, and
Miklavcic
,
D.
,
2005
, “
Sequential Finite Element Model of Tissue Electropermeabilization
,”
IEEE Trans. Biomed. Eng.
,
52
(
5
), pp.
816
827
.10.1109/TBME.2005.845212
46.
Ivorra
,
A.
, and
Rubinsky
,
B.
,
2007
, “
In Vivo Electrical Impedance Measurements During and After Electroporation of Rat Liver
,”
Bioelectrochemistry
,
70
(
2
), pp.
287
295
.10.1016/j.bioelechem.2006.10.005
You do not currently have access to this content.