In this study, the effects of magnetic field on combined heat and mass transfer in non-Newtonian nanofluids over a stretching surface with prescribed wall temperature and uniform surface nanoparticle concentration are investigated numerically. A power-law model is used for non-Newtonian fluids, whereas Brownian motion and thermophoresis effects are incorporated in the nanofluid model. A set of similarity transformation is used to reduce mass, momentum, thermal energy, and nanoparticles concentration equations into nonlinear ordinary differential equations, which are solved numerically by using a fourth–fifth order Runge–Kutta–Fehlberg method. Effects of nanofluid parameters, suction/injection and temperature parameters, and generalized Pr and Le numbers on dimensionless functions, skin friction, local Nusselt, and Sherwood numbers are investigated in the presence of magnetic field and are shown graphically. The quantitative comparison of skin friction and heat transfer rates with the published results for special cases is shown in tabular form and is found in good agreement.

References

1.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME Trans J. Heat Transfer
,
128
, pp.
240
250
.
2.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
, 2010, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
, pp.
243
247
.
3.
Khan
,
W. A.
, and
Pop
,
I.
, 2010, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2477
2483
.
4.
Vajravelu
,
K.
,
Prasad
,
K. V.
,
Lee
,
J.
,
Lee
,
C.
,
Pop
,
I.
, and
Van Gorder
,
R. A.
, 2011, “
Convective Heat Transfer in the Flow of Viscous Ag–Water and Cu–Water Nanofluids Over a Stretching Surface
,”
Int. J. Therm. Sci.
,
50
, pp.
843
851
.
5.
Makinde
,
O. D.
, and
Aziz
,
A.
, 2011, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
50
, pp.
1326
1332
.
6.
Hamad
,
M. A. A.
,
Pop
,
I.
, and
Ismail Md
,
A. I.
, 2011, “
Magnetic Field Effects on Free Convection Flow of a Nanofluid Past a Vertical Semi-Infinite Flat Plate
,”
Nonlinear Anal.: Real World Appl.
,
12
, pp.
1338
1346
.
7.
Chen
,
H. S.
,
Tan
,
C. Q.
,
Yang
,
W.
,
He
,
Y. R.
,
Ding
,
Y. L.
,
Alexei
,
A.
,
Dmitry
,
L.
, and
Bavykin
,
V.
, 2008, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate (H2Ti3O7) Nanotubes Under the Laminar Flow Conditions
,”
Powder Technol.
,
183
, pp.
63
72
.
8.
Ding
,
Y.
,
Chen
,
H.
,
He
,
Y.
,
Lapkin
,
A.
,
Yeganeh
,
M.
,
Siller
,
L.
, and
Butenko
,
Y. V.
, 2007, “
Forced Convective Heat Transfer of Nanofluids
,”
Adv. Powder Technol.
,
18
, pp.
813
824
.
9.
Ding
,
Y.
,
Chen
,
H.
,
Musina
,
Z.
,
Jin
,
Y.
,
Zhang
,
T.
,
Witharana
,
S.
, and
Yang
,
W.
, 2010, “
Relationship Between the Thermal Conductivity and Shear Viscosity of Nanofluids
,”
Phys. Scr.
,
139
, pp.
1
7
.
10.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
, 2008, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Powder Technol.
,
183
, pp.
63
72
.
11.
Chen
,
H.
,
Ding
,
Y.
, and
Tan
,
C.
, 2007, “
Rheological Behaviour of Nanofluids
,”
New J. Phys.
,
9
, pp.
367
-1–
24
.
12.
He
,
Y.
,
Men
,
Y.
,
Liu
,
X.
,
Lu
,
H.
,
Chen
,
H.
, and
Ding
,
Y.
, 2009, “
Study on Forced Convective Heat Transfer of Non-Newtonian Nanofluids
,”
J. Therm. Sci.
,
18
, pp.
20
26
.
13.
Crane
,
L. J.
, 1970, “
Flow Past a Stretching Plate
,”
J. Appl. Math. Phys.
21
, pp.
645
647
.
14.
Hassanien
,
I. A.
,
Abdullah
,
A. A.
, and
Gorla
,
R. S. R.
, 1998, “
Flow and Heat Transfer in a Power-Law Fluid Over a Nonisothermal Stretching Sheet
,”
Math. Comput. Modell.
,
28
, pp.
105
116
.
You do not currently have access to this content.