A microscale-structured surface consisting of heavily doped silicon rectangle grating and slotted silver layer is studied for omnidirectional narrowband emitter. Numerical simulation is implemented to obtain spectral emittance in mid-infrared region (6–16 μm) for the transverse magnetic incidence by using the rigorous coupled-wave analysis (RCWA) method. The effects of structural parameters and incident angle on its spectral emittance are investigated. In virtue of the microcavity effect, an omnidirectional narrowband emitter is proposed. By selecting a group of structural parameters, its peak emittance reaches as high as 0.998, and the peak width Δλ/λ of the emittance peak is as narrow as 0.03 at the specified wavelength. The results reveal that our proposed structured surface has the nice spectral features of angular uniformity and wavelength-selective characteristic, which can be applied to design novel narrowband thermal emitters and detectors in the infrared region.

References

1.
Basu
,
S.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2010, “
Infrared Radiative Properties of Heavily Doped Silicon at Room Temprature
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023301
.
2.
Hesketh
,
P. J.
,
Gebhart
,
B.
, and
Zemel
,
J. N.
, 1988, “
Measurements of the Spectral and Directional Emission From Microgrooved Silicon Surfaces
,”
ASME J. Heat Transfer
,
110
(
3
), pp.
680
686
.
3.
Auslender
,
M.
, and
Hava
,
S.
, 1995, “
Zero Infrared Reflectance Anomaly in Doped Silicon Lamellar Gratings. I. From Antireflection to Total Absorption
,”
Infrared Phys. Technol.
,
36
(
7
), pp.
1077
1088
.
4.
Chen
,
Y. B.
, and
Zhang
,
Z. M.
, 2008, “
Heavily Doped Silicon Complex Gratings as Wavelength-Selective Absorbing Surfaces
,”
J. Phys. D: Appl. Phys.
,
41
(
9
), p.
095406
.
5.
Laroche
,
M.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2005, “
Tailoring Silicon Radiative Properties
,”
Opt. Commun.
,
250
(
4
), pp.
316
320
.
6.
Lacour
,
D.
,
Granet
,
G.
, and
Plumey
,
J. P.
, 2003, “
Polarization Independence of a One-Dimensional Grating in Conical Mounting
,”
J. Opt. Soc. Am. A
,
20
(
8
), pp.
1546
1552
.
7.
Kreiter
,
M.
,
Oster
,
J.
,
Sambles
,
J. R.
,
Herminghaus
,
S.
,
Mittler-Neher
,
S.
, and
Knoll
,
W.
, 1999, “
Thermally Induced Emission of Light From a Metallic Diffraction Grating, Mediated by Surface Plasmons
,”
Opt. Commun.
,
168
(
1
), pp.
117
122
.
8.
Hibbins
,
A. P.
, and
Sambles
,
J. R.
, 2002, “
Excitation of Remarkably Nondispersive Surface Plasmons on a Nondiffracting, Dual-Pitch Metal Grating
,”
Appl. Phys. Lett.
,
80
(
13
), pp.
2410
2412
.
9.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Extraordinary Coherent Thermal Emission From SiC Due to Coupled Resonant Cavities
,”
ASME J. Heat Transfer
,
130
(
11
), p.
112401
.
10.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2008, “
Enhanced Coherency of Thermal Emission by Coupled Resonant Cavities Supporting Surface Waves
,”
Proc. SPIE
,
6901
, p.
69010
A.
11.
Liang
,
H.
, and
Wang
,
J.
, 2010, “
Enhancing Coupling Efficiency and Propagating Length for Surface Plasmon Polaritons
,”
Appl. Opt.
,
49
(
22
), pp.
4127
4130
.
12.
Srivastava
,
T.
, and
Kumar
,
A.
, 2009, “
Modal Characteristics of Coupled Metallic Nanoscale Rectangular Apertures
,”
Appl. Opt.
,
48
(
15
), pp.
2847
2852
.
13.
Huang
,
J.
,
Xuan
,
Y.
, and
Li
,
Q.
, 2010, “
Narrow-Band Spectral Features of Structured Silver Surface With Rectangular Resonant Cavities
,”
J. Quant. Spectrosc. Radiat. Transf.
,
112
(
5
), pp.
839
846
.
14.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Carninati
,
R.
,
Greffet
,
J. J.
, and
Chen
,
Y.
, 2004, “
Coherent Spontaneous Emission of Light by Thermal Sources
,”
Phys. Rev. B
,
69
(
15
), p.
155412
.
15.
Marquier
,
F.
,
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2007, “
Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating
,”
ASME J. Heat Transfer
,
129
(
1
), pp.
11
16
.
16.
Fu
,
C. J.
, and
Tan
,
W. C.
, 2009, “
Semiconductor Thin Films Combined With Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission
,”
ASME J. Heat Transfer
,
131
(
3
), p.
033105
.
17.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
, 1986, “
Organ Pipe Radiant Modes of Periodic Micromachined Silicon Surfaces
,”
Nature
,
324
, pp.
549
551
.
18.
Chen
,
Y. B.
,
Chen
,
J. S.
, and
Hsu
,
P. F.
, 2009, “
Impacts of Geometric Modification on Infrared Optical Responses of Metallic Slit Arrays
,”
Opt. Express
,
17
(
12
), pp.
9789
9803
.
19.
Wang
,
L. P.
, and
Zhang
,
Z. M.
, 2009, “
Resonance Transmission or Absorption in Deep Gratings Explained by Magnetic Polaritons
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111904
.
20.
Lee
,
B. J.
,
Chen
,
Y. B.
, and
Zhang
,
Z. M.
, 2008, “
Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays
,”
J. Quant. Spectrosc. Radiat. Transf.
,
109
(
4
), pp.
608
619
.
21.
Mallick
,
S. B.
,
Agrawal
,
M.
, and
Peumans
,
P.
, 2010, “
Optimal Light Trapping in Ultra-Thin Photonic Crystal Crystalline Silicon Solar Cells
,”
Opt. Express
,
18
(
6
), pp.
5691
5706
.
22.
Maier
,
S.
, 2007,
Plasmonics: Fundamentals and Applications
,
Springer-Verlag
,
New York
, pp.
144
150
.
23.
Hu
,
X.
,
Zhan
,
L.
, and
Xia
,
Y. X.
, 2008, “
Color Filters Based on Enhanced Optical Transmission of Subwavelength-Structured Metallic Film for Multicolor Organic Light-Emitting Diode Display
,”
Appl. Opt.
,
47
(
23
), pp.
4275
4279
.
24.
Wang
,
L. P.
,
Lee
,
B. J.
,
Wang
,
X. J.
, and
Zhang
,
Z. M.
, 2009, “
Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Perot Resonance Cavities
,”
Int. J. Heat Mass Transfer
,
52
(
13
), pp.
3024
3031
.
25.
Sai
,
H.
,
Yugami
,
H.
,
Akiyama
,
Y.
,
Kanamori
,
Y.
, and
Hane
,
K.
, 2001, “
Spectral Control of Thermal Emission by Periodic Microstructured Surfaces in the Near-Infrared Region
,”
J. Opt. Soc. Am. A
,
18
(
7
), pp.
1471
1476
.
26.
Moharam
,
M. G.
,
Pommet
,
D. A.
,
Grann
,
E. B.
, and
Gaylord
,
T. K.
, 1995, “
Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Appraoch
,”
J. Opt. Soc. Am. A
,
12
(
5
), pp.
1077
1086
.
27.
Li
,
L. F.
, 1997, “
New Formulation of the Fourier Modal Method for Crossed Surface-Relief Gratings
,”
J. Opt. Soc. Am. A
,
14
(
10
), pp.
2758
2767
.
28.
Moharam
,
M. G.
,
Grann
,
E. B.
,
Pommet
,
D. A.
, and
Gaylord
,
T. K.
, 1995, “
Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings
,”
J. Opt. Soc. Am. A
,
12
(
5
), pp.
1068
1076
.
29.
Masetti
,
G.
,
Severi
,
M.
, and
Solmi
,
S.
, 1983, “
Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon
,”
IEEE Trans. Electron Devices
,
30
(
7
), pp.
764
769
.
30.
Palik
,
E. D.
, 1985,
Handbook of Optical Constants of Solids
,
Academic
,
New York
, pp.
353
357
.
31.
Rivas
,
J. G.
,
Kuttge
,
M.
,
Bolivar
,
P. H.
,
Kurz
,
H.
, and
Sánchez-Gil
,
J. A.
, 2004, “
Propagation of Surface Plasmon Polaritons on Semiconductor Gratings
,”
Phys. Rev. Lett.
,
93
(
25
), p.
256804
.
32.
Lu
,
H.
,
Liu
,
X. M.
,
Zhou
,
R. L.
,
Gong
,
Y. K.
, and
Mao
,
D.
, 2010, “
Second-Harnonic Generation From Metal-Film Nanohole Arrays
,”
Appl. Opt.
,
49
, pp.
2347
2351
.
33.
Jin
,
E. X.
, 2007, “
Obtaining Subwavelength Optical Spots Using Nanoscale Ridge Apertures
,”
ASME J. Heat Transfer
,
129
(
1
), pp.
37
43
.
34.
Wang
,
L. P.
, and
Zhang
,
Z. M.
, 2010, “
Effect of Magnetic Polaritons on the Radiative Properties of the Double-Layer Nanoslit Arrays
,”
J. Opt. Soc. Am. B
,
27
(
12
), pp.
2595
2604
.
35.
Maruyama
,
S.
,
Kashiwa
,
T.
,
Yugami
,
H.
, and
Esashi
,
M.
, 2001, “
Thermal Radiation From Two-Dimensionally Confined Modes in Microcavities
,”
Appl. Phys. Lett.
,
79
(
9
), pp.
1393
1395
.
36.
Wang
,
J. L.
,
Zhu
,
M. Z.
, and
Lu
,
H. M.
, 2002,
Electramagnetic Field and Electramagnetic Wave
,
Publishing House of Xidian University, Xi’an
, p.
283
.
37.
Kusunoki
,
F.
,
Kohama
,
T.
,
Hiroshima
,
T.
,
Fukunoto
,
S.
,
Takahara
,
J.
, and
Kobayashi
,
T.
, 2004, “
Narrow-Band Thermal Radiation With Low Directivity by Resonant Modes Inside Tungsten Microcavities
,”
Jpn. J. Appl. Phys.
,
43
(
8A
), pp.
5253
5258
.
You do not currently have access to this content.