In the present paper, the effect of time-periodic temperature/gravity modulation on the thermal instability in a rotating viscous fluid layer has been investigated by performing a weakly nonlinear stability analysis. The disturbances are expanded in terms of power series of amplitude of modulation, which has been assumed to be small. The amplitude equation, viz., the Ginzburg–Landau equation, for the stationary mode of convection is obtained and using the same, the effect of temperature/gravity modulation on heat transport has been investigated. The stability of the system is studied and the stream lines are plotted at different slow times as a function of the amplitude of modulation, Rossby number, and Prandtl number. It is found that the temperature/gravity modulation can be used as an external means to augment/diminish heat transport in a rotating system. Further, it is shown that rotation can be effectively used in regulating heat transport.

References

1.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
,
Oxford, UK
.
2.
Drazin
,
P. G.
, and
Reid
,
D. H.
, 2004,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
3.
Venezian
,
G.
, 1969, “
Effect of Modulation on the Onset of Thermal Convection
,”
J. Fluid Mech.
,
35
, pp.
243
254
.
4.
Gershuni
,
G. Z.
, and
Zhukhovitskii
,
E. M.
, 1963, “
On Parametric Excitation of Convective Instability
,”
J. Appl. Math. Mech.
,
27
, pp.
1197
1204
.
5.
Rosenblat
,
S.
, and
Herbert
,
D.
M, 1970, “
Low Frequency Modulation of Thermal Instability
,”
J. Fluid Mech.
,
43
, pp.
385
398
.
6.
Rosenblat
,
S.
, and
Tanaka
,
G. A.
, 1971, “
Modulation of Thermal Convection Instability
,”
Phys. Fluids
,
14
(
7
), pp.
1319
1322
.
7.
Roppo
,
M. N.
,
Davis
,
S. H.
, and
Rosenblat
,
S.
, 1984, “
Bénard Convection With Time-Periodic Heating
,”
Phys. Fluids
,
27
(
4
), pp.
796
803
.
8.
Bhadauria
,
B. S.
, and
Bhatia
,
P. K.
, 2002, “
Time Periodic Heating of Rayleigh-Bénard Convection
,”
Phys. Scr.
,
66
, pp.
59
65
.
9.
Malashetty
,
M. S.
, and
Swamy
,
M.
, 2008, “
Effect of Thermal Modulation on the Onset of Convection in a Rotating Fluid Layer
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2814
2823
.
10.
Bhadauria
,
B. S.
,
Bhatia
,
P. K.
, and
Debnath
,
L.
, 2009, “
Weakly Non-Linear Analysis of Rayleigh-Bénard Convection With Time-Periodic Heating
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
58
65
.
11.
Gresho
,
P. M.
, and
Sani
,
R. L.
, 1970, “
The Effects of Gravity Modulation on the Stability of a Heated Fluid Layer
,”
J. Fluid Mech.
,
40
(
4
), pp.
783
806
.
12.
Wadih
,
M.
, and
Roux
,
B.
, 1988, “
Natural Convection in a Long Vertical Cylinder Under Gravity Modulation
,”
J. Fluid Mech.
,
193
, pp.
391
415
.
13.
Clever
,
R.
,
Schubert
,
G.
, and
Busse
,
F. H.
, 1993, “
Two-Dimensional Oscillatory Convection in a Gravitationally Modulated Fluid Layer
,”
J. Fluid Mech.
,
253
, pp.
663
680
.
14.
Bhadauria
,
B. S.
, 2006, “
Gravitational Modulation of Rayleigh-Bénard Convection
,”
Proc. Natl. Acad. Sci. India
,
76
(
A
), pp.
61
67
.
15.
Bhadauria
,
B. S.
,
Bhatia
,
P. K.
, and
Debnath
,
L.
, 2005, “
Convection in Hele–Shaw Cell With Parametric Excitation
,”
Int. J. Non-Linear Mech.
,
40
, pp.
475
484
.
16.
Malashetty
,
M. S.
, and
Swamy
,
M.
, 2011, “
Effect of Gravity Modulation on the Onset of Thermal Convection in a Rotating Fluid and Porous Layer
,”
Phys. Fluids
,
23
, p.
064108
.
17.
Homsy
,
G. M.
, 1974, “
Global Stability of Time-Dependent Flows. Part 2. Modulated Fluid Layers
,”
J. Fluid Mech.
,
62
, pp.
387
403
.
18.
Siddheshwar
,
P. G.
,
Bhadauria
,
B. S.
,
Mishra
,
P.
, and
Srivastava
,
A. K.
, 2012, “
Study of Heat Transport by Stationary Magneto-Convection in a Newtonian Liquid Under Temperature or Gravity Modulation Using Ginzburg-Landau Model
,”
Int. J. Non-linear Mech.
,
47
, pp.
418
425
.
19.
Siddheshwar
,
P. G.
, 2010, “
A Series Solution for the Ginzburg-Landau Equation With a Time-Periodic Coefficient
,”
Appl. Math.
,
1
(
6
), pp.
542
554
.
20.
Knobloch
,
E. S.
, 1998, “
Rotating Convection: Recent Developments
,”
Int. J. Eng. Sci.
,
36
, pp.
1421
1460
.
21.
Ecke
,
R. E.
,
Zhong
,
F.
, and
Knobloch
,
E. S.
, 1992, “
Hopf Bifurcation With Broken Reflection Symmetry in Rotating Rayleigh-Bénard Convection
,”
Europhys. Lett.
,
19
, pp.
177
182
.
22.
Rossby
,
H. T.
, 1969, “
A Study of Bénard Convection With and Without Rotation
,”
J. Fluid Mech.
,
36
, pp.
309
335
.
23.
Busse
,
F. H.
, 1982, “
Thermal Convection in Rotating Systems
,”
Proceedings of US National Congress of Applied Mechanics, American Society of Mechanical Engineers
, pp.
299
305
.
24.
Liu
,
Y.
, and
Ecke
,
R. E.
, 1997, “
Heat Transport Scaling in Turbulent Rayleigh-Bénard Convection: Effects of Rotation and Prandtl Number
,”
Phys. Rev. Lett.
,
79
, pp.
2257
2260
.
You do not currently have access to this content.