The transformation group theoretic approach is applied to perform an analysis of unsteady free convection flow over a vertical flat plate immersed in a power law fluid. The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq fluid. The system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions via two-parameter group theory. The obtained ordinary differential equations are solved numerically for velocity and temperature using the fourth order Runge-Kutta and shooting method. The effect of Prandtl number and viscosity index (n) on the thermal boundary-layer, velocity boundary-layer, local Nusselt number, and local skin-friction were studied.

References

1.
Srivastava
,
A. C.
, 1958, “
The Flow of Non-Newtonian Liquid Near a Stagnation Point
,”
ZAMP
,
9
, pp.
80
84
.
2.
Rajeshwari
,
G. K.
, and
Rathna
,
S. L.
, 1962, “
Flow of a Particular Class of Non-Newtonian Visco-Elastic and Visco-Inelastic Fluids Near a Stagnation Point
,”
ZAMP
,
13
, pp.
43
57
.
3.
Rajagopal
,
K. R.
,
Gupta
,
A. S.
, and
Wineman
,
A. S.
, 1980, “
On a Boundary Layer Theory for Non-Newtonian Fluids
,”
Int. J. Eng. Sci.
,
18
, pp.
875
883
.
4.
Garg
,
V. K.
, and
Rajagopal
,
K. R.
, 1991, “
Flow of a Non-Newtonian Fluid Past a Wedge
,”
Acta Mech.
,
88
, pp.
113
123
.
5.
Pakdemirli
,
M.
, and
Suhubi
,
E. S.
, 1992, “
Similarity Solutions of Boundary Layer Equations for Second Order Fluids
,”
Int. J. Eng. Sci.
,
30
, pp.
611
629
.
6.
Pakdemirli
,
M.
, 1992, “
The Boundary Layer Equations of Third-Grade Fluids
,”
Int. J. Non-Linear Mech.
,
27
, pp.
785
793
.
7.
Beard
,
D. W.
, and
Walters
,
K.
, 1964, “
Elastico-Viscous Boundary Layer Flows I. Two-Dimensional Flow Near a Stagnation Point
,”
Math. Proc. Camb. Phil. Soc.
,
60
, pp.
667
674
.
8.
Astin
,
J.
,
Jones
,
R. S.
, and
Lockyer
,
P.
, 1973, “
Boundary Layers in Non-Newtonian Fluids
,”
J. Mecanique
,
12
, pp.
527
539
.
9.
Ostwald
,
W.
, and
Auerbach
,
R.
, 1926,
Uber die viskositat kolloider hosungen im Strutter-Laminar und turbulezgebiet
,
Kolloid-Z.
,
38
, pp.
261
280
.
10.
Irvine
,
T. F.
, and
Karni
,
J.
, 1987, “
Non-Newtonian Fluid Flow and Heat Transfer
,”
Handbook of Single-Phase Convective Heat Transfer
, Vol.
15
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Academic Press, Wiley
,
New York
, pp.
20.1
20.57
.
11.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
, 1960, “
Momentum and Heat Transfer in Laminar Boundary-Layer Flows of Non-Newtonian Fluids Past External Surfaces
,”
AIChE J.
,
6
, pp.
312
317
.
12.
Schowalter
,
W. R.
, 1960, “
The Application of Boundary-Layer Theory to Power-Law Pseudoplastic Fluids: Similar Solutions
,”
AIChE J.
,
6
, pp.
24
28
.
13.
Na
,
T. Y.
, and
Hansen
,
A. G.
, 1967, “
Similarity Solutions of a Class of Laminar Three-Dimensional Boundary Layer Equations of Power Law Fluids
,”
Int. J. Non-Linear Mech.
,
2
, pp.
373
385
.
14.
Pakdemirli
,
M.
, 1993, “
Boundary Layer Flow of Power-Law Fluids Past Arbitrary Profiles
,”
J. Appl. Math.
,
50
, pp.
133
148
.
15.
Pascal
,
H.
, 1992, “
Similarity Solution to Some Unsteady Flows of Non-Newtonian Fluids of Power Law Behavior
,”
Int. J. Non-Linear Mech.
,
27
, pp.
759
771
.
16.
Grosan
,
T. S.
,
Pop
,
I.
, and
Na
,
T. Y.
, 2000, “
Similarity Solution for Boundary Layer Flows on a Moving Surface in Non Newtonian Power Law Fluids
,” Technische Mechanik, Band 20, Heft 1.
17.
Andersson
,
H. I.
, and
Dandapat
,
B. S.
, 1991, “
Flow of a Power Law Fluid Over a Stretching Sheet
,”
Stability Appl. Anal. Cont. Media
,
1
, pp.
339
347
.
18.
Andersson
,
H. I.
,
Aarseth
,
J. B.
,
Brand
,
N.
, and
Dandapat
,
B. S.
, 1996, “
Flow of a Power-Law Fluid Film on an Unsteady Stretching Surface
,”
J. Non-Newtonian Fluid Mech.
,
62
, pp.
1
8
.
19.
Chen
,
C. H.
, 2003, “
Heat Transfer in a Power Law Fluid Film Over a Unsteady Stretching Sheet
,”
J. Heat Mass Transfer
,
39
, pp.
791
796
.
20.
Chen
,
T. S.
,
Buchanan
,
W. P.
, and
Armaly
,
B. F.
, 1993, “
Natural Convection on Vertical and Horizontal Plates With Vectored Surface Mass Transfer
,”
J. Heat Mass Transfer
,
36
, pp.
479
487
.
21.
Makinde
,
O. D.
, 2011, “
Similarity Solution for Natural Convection From a Moving Vertical Plate With Internal Heat Generation and a Convective Boundary Condition
,”
Therm. Sci.
,
15
(Suppl. 1), pp.
S137
S143
.
22.
Alam
,
Md. M.
,
Alim
,
M. A.
, and
Chowdhury
,
Md. M. K.
, 2007, “
Viscous Dissipation Effects on MHD Natural Convection Flow Over a Sphere in the Presence of Heat Generation
,”
Nonlinear Anal.: Model. Control
,
12
(
4
), pp.
447
459
.
23.
Afify
,
A.
, 2009, “
Similarity Solution in MHD: Effects of Thermal Diffusion and Diffusion Thermo on Free Convective Heat and Mass Transfer Over a Stretching Surface Considering Suction or Injection
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
14
, pp.
2202
2214
.
24.
Seddeek
,
M. A.
, 2009, “
Similarity Solutions for a Steady MHD Falkner-Skan Flow and Heat Transfer Over a Wedge Considering the Effects of Variable Viscosity and Thermal Conductivity
,”
Applicat. Appl. Math.
,
4
(
2
), pp.
301
313
.
25.
Abd-el-Malek
,
M.
,
Kassem
,
M.
, and
Mekky
,
M.
, 2004, “
Similarity Solutions for Unsteady Free-Convection Flow From a Continuous Moving Vertical Surface
,”
J. Computat. Appl. Math.
,
164–165
, pp.
11
24
.
26.
Sharma
,
P. R.
, and
Singh
,
G.
, 2008, “
Unsteady Free Convective Flow and Heat Transfer Along a Vertical Porous Plate
,”
Int. J. Appl. Math. Mech.
,
4
(
5
), pp.
1
8
.
27.
Pullepu
,
B.
,
Ekambavanan
,
K.
, and
Chamkha
,
A. J.
, 2008, “
Unsteady Laminar Free Convection From a Vertical Cone With Uniform Surface Heat Flux
,”
Nonlinear Anal.: Model. Control
,
13
(
1
), pp.
47
60
.
28.
Shenoy
,
A. V.
, 1986, “
Natural Convection Heat Transfer to Power-Law Fluids
,”
Handbook of Heat and Mass Transfer
,
N. P.
Cherimisinoff
, ed.,
Gulf Publishing
,
Houston, TX
.
29.
Huang
,
M. J.
, and
Lin
,
B. L.
, 1993, “
Mixed Convection From a Vertical Plate to Power-Law Fluids
,”
J. Thermophys. Heat Transfer
,
7
, pp.
171
173
.
30.
Chamkha
,
A. J.
, 2010, “
Unsteady Natural Convective Power-Law Fluid Flow Past a Vertical Plate Embedded in a Non-Darcian Porous Medium in the Presence of a Homogeneous Chemical Reaction
,”
Nonlinear Anal.: Model. Control
,
15
(
2
), pp.
139
154
.
31.
Erbas
,
S.
, and
Ece
,
M. C.
, 1998, “
Free Convection to Power-Law Fluids From a Vertical Plate With a Variable Surface Temperature
,”
Proceedings of the CSME Forum ‘98
,
Ryerson Polytechnic University, Toronto, Ontario
,
Canada
, May 19–22, Vol.
1
, pp.
241
247
.
32.
Ece
,
M. C.
, and
Erbas
,
S.
, 1999, “
Free Convection to Power-Law Fluids From a Vertical Plate of Variable Surface Heat Flux
,”
Can. Appl. Math. Quart.
,
7
, pp.
363
380
.
33.
Press
,
W. H.
, and
Teukolsky
,
S.
, 1996,
Numerical Recipes in Fortran 90. The Art of Parallel Scientific Computing,
2nd ed.,
Cambridge University Press
,
New York
.
34.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.