Nonequilibrium molecular dynamics (NEMD) simulations were performed to investigate schemes for enhancing the energy conversion efficiency of thermoelectric nanowires (NWs), including (1) roughening of the nanowire surface, (2) creating nanoparticle inclusions in the nanowires, and (3) coating the nanowire surface with other materials. The enhancement in energy conversion efficiency was inferred from the reduction in thermal conductivity of the nanowire, which was calculated by imposing a temperature gradient in the longitudinal direction. Compared to pristine nanowires, our simulation results show that the schemes proposed above lead to nanocomposite structures with considerably lower thermal conductivity (up to 82% reduction), implying ∼5X enhancement in the ZT coefficient. This significant effect appears to have two origins: (1) increase in phonon-boundary scattering and (2) onset of interfacial interference. The results suggest new fundamental–yet realizable ways to improve markedly the energy conversion efficiency of nanostructured thermoelectrics.

References

References
1.
Majumdar
,
A.
, 2004, “
Thermoelectricity in Semiconductor Nanostructures
,”
Science
,
303
, pp.
777
778
.
2.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
, pp.
2934
2936
.
3.
Hochbaum
,
A. I.
,
Chen
,
R.
,
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P.
, 2008, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature
,
451
, pp.
163
167
.
4.
Chen
,
X.
,
Wang
,
Y.
, and
Ma
,
Y.
, 2010, “
High Thermoelectric Performance of Ge/Si Core-Shell Nanowires: First-Principles Prediction
,”
J. Phys. Chem. C
,
114
, pp.
9096
9100
.
5.
Peng
,
K.
,
Wang
,
X.
,
Wu
,
X.
, and
Lee
,
S.
, 2009, “
Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion
,”
Nano Lett.
,
9
, pp.
3704
3709
.
6.
Yang
,
N.
,
Zhang
,
G.
, and
Li
,
B.
, 2008, “
Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires
,”
Nano Lett.
,
8
, pp.
276
280
.
7.
Hu
,
M.
,
Giapis
,
K. P.
,
Goicochea
,
J. V.
,
Zhang
,
X.
, and
Poulikakos
,
D.
, 2011, “
Significant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires
,”
Nano Lett.
,
11
, pp.
618
623
.
8.
Hu
,
M.
,
Zhang
,
X.
,
Giapis
,
K. P.
, and
Poulikakos
,
D.
, 2011, “
Thermal Conductivity Reduction in Core-Shell Nanowires
,”
Phys. Rev. B
,
84
, p.
085442
.
9.
Yang
,
Z.
,
Guarin
,
F.
,
Tao
,
I. W.
,
Wang
,
W. I.
, and
Iyer
,
S. S.
, 1995, “
Approach to Obtain High Quality GaN on Si and SiC-on-Silicon-on-Insulator Compliant Substrate by Molecular-Beam Epitaxy
,”
J. Vac. Sci. Technol. B
,
13
, pp.
789
791
.
10.
Schenk
,
H. P. D.
,
Kipshidze
,
G. D.
,
Lebedev
,
V. B.
,
Shokhovets
,
S.
,
Goldhahn
,
R.
,
Kräuβlich
,
J.
,
Fissel
,
A.
, and
Richter
,
W.
, 1999, “
Epitaxial Growth of AlN and GaN on Si(1 1 1) by Plasma-Assisted Molecular Beam Epitaxy
,”
J. Cryst. Growth
,
201/202
, pp.
359
364
.
11.
Joblot
,
S.
,
Semond
,
F.
,
Natali
,
F.
,
Vennéguès
,
P.
,
Laügt
,
M.
,
Cordier
,
Y.
, and
Massies
,
J.
, 2005, “
Growth of Wurtzite-GaN on Silicon (100) Substrate by Molecular Beam Epitaxy
,”
Phys. Status. Solidi.
,
2
, pp.
2187
2190
.
12.
Kumagai
,
T.
,
Izumi
,
S.
,
Hara
,
S.
, and
Sakai
,
S.
, 2007, “
Development of Bond-Order Potentials That Can Reproduce the Elastic Constants and Melting Point of Silicon for Classical Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
39
, pp.
457
464
.
13.
Juslin
,
N.
,
Erhart
,
P.
,
Träskelin
,
P.
,
Nord
,
J.
,
Henriksson
,
K. O. E.
,
Nordlund
,
K.
,
Salonen
,
E.
, and
Albe
,
K.
, 2005, “
Analytical Interatomic Potential for Modeling Nonequilibrium Processes in the W–C–H System
,”
J. Appl. Phys.
,
98
(12)
, p.
123520
.
14.
Tersoff
,
J.
, 1989, “
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
,
39
, pp.
5566
5568
.
15.
Stillinger
,
F. H.
, and
Weber
,
T. A.
, 1985, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
, pp.
5262
5271
.
16.
Ding
,
K.
, and
Anderson
,
H. C.
, 1986, “
Molecular-Dynamics Simulation of Amorphous Germanium
,”
Phys. Rev. B
,
34
, pp.
6987
6991
.
17.
Karimi
,
M.
,
Kaplan
,
T.
,
Mostoller
,
M.
, and
Jesson
,
D. E.
, 1993, “
Ge Segregation at Si-Ge (001) Stepped Surfaces
,”
Phys. Rev. B
,
47
, pp.
9931
9932
.
18.
Erhart
,
P.
, and
Albe
,
K.
, 2005, “
Analytical Potential for Atomistic Simulations of Silicon, Carbon, and Silicon Carbide
,”
Phys. Rev. B
,
71
, p.
035211
.
19.
Nord
,
J.
,
Albe
,
K.
,
Erhart
,
P.
, and
Nordlund
,
K.
, 2003, “
Modelling of Compound Semiconductors: Analytical Bond-Order Potential for Gallium, Nitrogen and Gallium Nitride
,”
J. Phys.: Condens. Matter
,
15
, pp.
5649
5662
.
20.
Zhou
,
X. W.
, and
Jones
,
R. E.
, 2011, “
Effects of Cutoff Functions of Tersoff Potentials on Molecular Dynamics Simulations of Thermal Transport
,”
Modelling Simul. Mater. Sci. Eng.
,
19
, p.
025004
.
21.
Benkabou
,
F.
,
Certier
,
M.
, and
Aourag
,
H.
, 2003, “
Elastic Properties of Zinc-Blende GaN, AlN and InN From Molecular Dynamics
,”
Mol. Simul.
,
29
, pp.
201
209
.
22.
Goumri-Said
,
S.
,
Kanoun
,
M. B.
,
Merad
,
A. E.
,
Merad
,
G.
, and
Aourag
,
H.
, 2004, “
Prediction of Structural and Thermodynamic Properties of Zinc-Blende AlN: Molecular Dynamics Simulation
,”
Chem. Phys.
,
302
, pp.
135
141
.
23.
Munetoh
,
S.
,
Motooka
,
T.
,
Moriguchi
,
K.
, and
Shintani
,
A.
, 2007, “
Interatomic Potential for Si–O Systems Using Tersoff Parameterization
,”
Comput. Mater. Sci.
,
39
, pp.
334
339
.
24.
Billeter
,
S. R.
,
Curioni
,
A.
,
Fischer
,
D.
, and
Andreoni
,
W.
, 2006, “
Ab Initio Derived Augmented Tersoff Potential for Silicon Oxynitride Compounds and Their Interfaces With Silicon
,”
Phys. Rev. B
,
73
, p.
155329
.
25.
Billeter
,
S. R.
,
Curioni
,
A.
,
Fischer
,
D.
, and
Andreoni
,
W.
, 2009, “
Erratum: Ab Initio Derived Augmented Tersoff Potential for Silicon Oxynitride Compounds and Their Interfaces With Silicon [Phys. Rev. B 73, 155329 (2006)]
,”
Phys. Rev. B
,
79
, p.
169904
.
26.
Ippolito
,
M.
, and
Meloni
,
S.
, 2011, “
Atomistic Structure of Amorphous Silicon Nitride From Classical Molecular Dynamics Simulations
,”
Phys. Rev. B
,
83
, p.
165209
.
27.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.
28.
Nosé
,
S.
, 1984, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
,
81
, pp.
511
519
.
29.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
, pp.
1695
1697
.
30.
Jund
,
P.
, and
Julien
,
R.
, 1999, “
Molecular Dynamics Calculation of the Thermal Conductivity of Vitreous Silica
,”
Phys. Rev. B
,
59
, pp.
13707
13711
.
31.
Mu¨ller-Plathe
,
F.
, 1997, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(14)
, pp.
6082
6085
.
32.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
, p.
144306
.
33.
Pan
,
L.
,
Lew
,
K. K.
,
Redwing
,
J. M.
, and
Dickey
,
E. C.
, 2005, “
Stranski–Krastanow Growth of Germanium on Silicon Nanowires
,”
Nano Lett.
,
5
, pp.
1081
1085
.
34.
Hu
,
M.
,
Goicochea
,
J. V.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
Water Nanoconfinement Induced Thermal Enhancement at Hydrophilic Quartz Interfaces
,”
Nano Lett.
,
10
, pp.
279
285
.
35.
Goicochea
,
J. V.
,
Hu
,
M.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2011, “
Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces
,”
ASME J. Heat Transfer
,
133
, p.
082401
.
36.
Hu
,
M.
,
Zhang
,
X.
,
Poulikakos
,
D.
, and
Grigoropoulos
,
C. P.
, 2011, “
Large ‘Near Junction’ Thermal Resistance Reduction in Electronics by Interface Nanoengineering
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5183
5191
.
37.
Bell
,
R. J.
, and
Dean
,
P.
, 1970, “
Atomic Vibrations in Vitreous Silica
,”
Discuss. Faraday Soc.
,
50
, pp.
55
61
.
38.
Daly
,
B. C.
,
Maris
,
H. J.
,
Imamura
,
K.
, and
Tamura
,
S.
, 2002, “
Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
66
, p.
024301
.
39.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
, 2009, “
Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices
,”
Phys. Rev. B
,
79
, p.
075316
.
40.
Termentzidis
,
K.
,
Chantrenne
,
P.
, and
Keblinski
,
P.
, 2009, “
Nonequilibrium Molecular Dynamics Simulation of the In-Plane Thermal Conductivity of Superlattices With Rough Interfaces
,”
Phys. Rev. B
,
79
(21)
, p.
214307
.
41.
Termentzidis
,
K.
,
Merabia
,
S.
,
Chantrenne
,
P.
, and
Keblinski
,
P.
, 2011, “
Cross-Plane Thermal Conductivity of Superlattices With Rough Interfaces Using Equilibrium and Non-Equilibrium Molecular Dynamics
,”
Int. J. Heat Mass Transfer.
,
54
, pp.
2014
2020
.
42.
Pokatilov
,
E. P.
,
Nika
,
D. L.
, and
Balandin
,
A. A.
, 2005, “
Acoustic-Phonon Propagation in Rectangular Semiconductor Nanowires With Elastically Dissimilar Barriers
,”
Phys. Rev. B
,
72
, p.
113311
.
43.
Fonoberov
,
V. A.
, and
Balandin
,
A. A.
, 2006, “
Giant Enhancement of the Carrier Mobility in Silicon Nanowires With Diamond Coating
,”
Nano Lett.
,
6
, pp.
2442
2446
.
You do not currently have access to this content.