Heat transfer in a thermally positioned doubly clamped bridge is simulated to obtain a universal scaling for the behavior of microscale and nanoscale bridge structures over a range of dimensions, materials, ambient heat transfer conditions, and heat loads. The simulations use both free molecular and continuum models to define the heat transfer coefficient, h. Two systems are compared: one doubly clamped beam with a length of 100 μm, a width of 10 μm, and a thickness of 3 μm, and a second beam with a length of 10 μm, a width of 1 μm, and a thickness of 300 nm, in the air at a pressure from 0.01 Pa to 2 MPa. The simulations are performed for three materials: crystalline silicon, silicon carbide, and chemical vapor deposition (CVD) diamond. The numerical results show that the displacement and the response of thermally positioned nanoscale devices are strongly influenced by ambient cooling. The displacement depends on the material properties, the geometry of the beam, and the heat transfer coefficient. These results can be collapsed into a single dimensionless center displacement, δ* = δk/q″αl2, which depends on the Biot number and the system geometry. The center displacement of the system increases significantly as the bridge length increases, while these variations are negligible when the bridge width and thickness change. In the free molecular model, the center displacement varies significantly with the pressure at high Biot numbers, while it does not depend on cooling gas pressure in the continuum case. The significant variation of center displacement starts at Biot number of 0.1, which occurs at gas pressure of 27 kPa in nanoscale. As the Biot number increases, the dimensionless displacement decreases. The continuum-level effects are scaled with the statistical mechanics effects. Comparison of the dimensionless displacement with the thermal vibration in the system shows that CVD diamond systems may have displacements that are at the level of the thermal noise, while silicon carbide systems will have a higher displacement ratios.

References

1.
Nguyen
,
C. T.-C.
, 1999, “
Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices
,”
IEEE Trans. Microwave Theory Tech.
,
47
(
8
), pp.
1486
1503
.
2.
Jensen
,
K.
,
Weldon
,
J.
,
Garcia
,
H.
, and
Zettl
,
A.
, 2007, “
Nanotube Radio
,”
Nano Lett.
,
7
(
11
), pp.
3508
3511
.
3.
Piner
,
R. D.
,
Zhu
,
J.
,
Xu
,
F.
,
Hong
,
S.
, and
Mirkin
,
C. A.
, 1999, “
Dip-Pen Nanolithography
,”
Science
,
283
(
5402
), pp.
661
663
.
4.
Fan
,
H.
,
Lu
,
Y.
,
Stump
,
A.
,
Reed
,
S. T.
,
Baer
,
T.
,
Schunk
,
R.
,
Perez-Luna
,
V.
,
Lopez
,
G. P.
, and
Brinker
,
C. J.
, 2000, “
Rapid Prototyping of Patterned Functional Nanostructures
,”
Nature
,
405
(
6782
), pp.
56
60
.
5.
Ding
,
B.
,
Wang
,
M.
,
Wang
,
X.
,
Yu
,
J.
, and
Suna
,
G.
, 2010, “
Electrospun Nanomaterials for Ultrasensitive Sensors
,”
Mater. Today
,
13
(
11
), pp.
16
27
.
6.
Vettiger
,
P.
,
Cross
,
G.
,
Despont
,
M.
,
Drechsler
,
U.
,
Durig
,
U.
,
Gotsmann
,
B.
,
Haberle
,
W.
,
Lantz
,
M. A.
,
Rothuizen
,
H. E.
,
Stutz
,
R.
, and
Binnig
,
G. K.
, 2002, “
The ‘Millipede’ Nanotechnology Entering Data Storage
,”
IEEE Trans. Nanotechnol.
,
1
(
1
), pp.
39
55
.
7.
Pal
,
S.
, and
Xie
,
H.
, 2009, “
A Parametric Dynamic Compact Thermal Model of an Electrothermally Actuated Micromirror
,”
J. Micromech. Microeng.
,
19
(6)
, p.
065007
.
8.
Hashimoto
,
E.
,
Tanaka
,
H.
,
Suzuki
,
Y.
,
Uensishi
,
Y.
, and
Watabe
,
A.
, 1994, “
Thermally Controlled Magnetization Actuator (TCMA) Using Thermosensitive Magnetic Materials
,”
Proceedings of IEEE Micro Electro Mechanical Systems Workshop
, New Jersey, pp.
108
113
.
9.
Svitelskiy
,
O.
,
Liu
,
N.
,
Sauer
,
V.
,
Cheng
,
K. M.
,
Finley
,
E.
,
Belov
,
M.
,
Freeman
,
M. R.
, and
Hiebert
,
W. K.
, 2008, “
A Simple Cell for the Analysis of Nanoelectromechanical Systems Under Gas Pressure
,”
Rev. Sci. Instrum.
79
, p.
093701
.
10.
Faraon
,
A.
,
Englund
,
D.
,
Fushman
,
I.
,
Vuckovic
,
J.
,
Stoltz
,
N.
, and
Petroff
,
P.
, 2007, “
Local Quantum Dot Tuning on Photonic Crystal Chips
,”
Appl. Phys. Lett.
90
(21)
, p.
213110
.
11.
Faraon
,
A.
, and
Vuckovic
,
J.
, 2009, “
Local Temperature Control of Photonic Crystal Devices via Micron-Scale Electrical Heaters
,”
Appl. Phys. Lett.
95
(4)
, p.
043102
.
12.
Zhu
,
Y.
,
Bazaei
,
A.
,
Moheimani
,
S. O. R.
, and
Yuce
,
M. R.
, 2011, “
Design, Modeling, and Control of a Micromachined Nanopositioner With Integrated Electrothermal Actuation and Sensing
,”
J. Microelectromech. Syst.
,
20
(3)
, pp.
711
719
.
13.
Wang
,
X.
,
Martinez
,
J. A.
,
Nawrocka
,
M. S.
, and
Panepucci
,
R. R.
, 2008, “
Compact Thermally Tunable Silicon Wavelength Switch: Modeling and Characterization
,”
IEEE Photonics Technol. Lett.
,
20
(11)
, pp.
936
938
.
14.
Wang
,
X.
,
Bullen
,
D. A.
,
Zou
,
J.
,
Liu
,
C.
, and
Mirkin
,
C. A.
, 2004, “
Thermally Actuated Probe Array for Parallel Dip-Pen Nanolithography
,”
J. Vac. Sci. Technol. B
,
22
(
6
), pp.
2563
2567
.
15.
Ilic
,
B.
,
Krylov
,
S.
, and
Craighead
,
H. G.
, 2010, “
Theoretical and Experimental Investigation of Optically Driven Nanoelectromechanical Oscillators
,”
J. Appl. Phys.
107
, p.
034311
.
16.
Mastropaolo
,
E.
, and
Cheung
,
R.
, 2008, “
Electrothermal Actuation Studies on Silicon Carbide Resonators
,”
J. Vac. Sci. Technol. B
,
26
(
6
), pp.
2619
2623
.
17.
Mastropaolo
,
E.
,
Cheung
,
R.
,
Henry
,
A.
, and
Janzén
,
E.
, 2009, “
Electrothermal Actuation of Silicon Carbide Ring Resonators
,”
J. Vac. Sci. Technol. B
,
27
(
6
), pp.
3109
3114
.
18.
Hickey
,
R.
,
Kujath
,
M.
, and
Hubbard
,
T.
, 2002, “
Heat Transfer Analysis and Optimization of Two-Beam Micro-Electromechanical Thermal Actuators
,”
J. Vac. Sci. Technol. A
,
20
(
3
), pp.
971
974
.
19.
Phinney
,
L. M.
,
Serrano
,
J. R.
,
Piekos
,
E. S.
,
Torczynski
,
J. R.
,
Gallis
,
M. A.
, and
Gorby
,
A. D.
, 2010, “
Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr
,”
ASME J. Heat Transfer
,
132
, p.
072402
.
20.
Liu
,
H.
,
Wang
,
M.
,
Wang
,
J.
,
Zhang
,
G.
,
Liao
,
H.
,
Huang
,
R.
, and
Zhang
,
X.
, 2007, “
Monte Carlo Simulation of Gas Flow and Heat Transfer in Vacuum Packaged MEMS Devices
,”
Appl. Therm. Eng.
,
27
(
2-3
), pp.
323
329
.
21.
Lee
,
J.
,
Wright
,
T. L.
,
Abel
,
M. R.
,
Sunden
,
E. O.
,
Marchenkov
,
A.
,
Graham
,
S.
, and
King
,
W. P.
, 2007, “
Thermal Conduction From Microcantilever Heaters in Partial Vacuum
,”
J. Appl. Phys.
,
101
, p.
014906
.
22.
Martin
,
M. J.
, and
Houston
,
B. H.
, 2009, “
Frequency-Dependent Free-Molecular Heat Transfer of Vibrating Cantilevers and Bridges
,”
Phys. Fluids
,
21
, p.
017101
.
23.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
John Wiley & Sons
,
New York
.
24.
Narayanaswamy
,
A.
, and
Gu
,
N.
, 2011, “
Heat Transfer From Freely Suspended Bimaterial Microcantilevers
,”
ASME J. Heat Transfer
,
133
, p.
042401
.
25.
Park
,
K.
,
Lee
,
J.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Frequency-Dependent Electrical and Thermal Response of Heated Atomic Force Microscope Cantilevers
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
213
222
.
26.
Ramanan
,
S.
, and
Yang
,
R.
, 2009, “
Effect of Gas Rarefaction on the Performance of Submicron Fins
,”
Appl. Phys. Lett.
94
, p.
143106
.
27.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1960,
Theory of Thermal Stresses
,
Wiley
,
New York
.
28.
Schwab
,
K. C.
, and
Roukes
,
M. L.
, 2005, “
Putting Mechanics Into Quantum Mechanics
,”
Phys. Today
,
58
(
7
), pp.
36
42
.
29.
Stowe
,
T. D.
,
Yasumura
,
K.
,
Kenny
,
T. W.
,
Botkin
,
D.
,
Wago
,
K.
, and
Rugar
,
D.
, 1997, “
Attonewton Force Detection Using Ultrathin Silicon Cantilevers
,”
Appl. Phys. Lett
,
71
(
2
), pp.
288
290
.
30.
Datskos
,
P. G.
,
Lavrik
,
N. V.
,
Rajic
,
S.
, 2003, “
Performance of Uncooled Microcantilever Thermal Detectors
,”
Rev. Sci. Instrum.
,
77
(
4
), pp.
1134
1148
.
31.
Young
,
W. C.
, and
Budynas
,
R. G.
, 2002,
Roark’s Formulas for Stress and Strain
, 7th ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.