The relatively poor understanding of gravity effects on pool boiling heat transfer can be attributed to the lack of long duration high-quality microgravity data, g-jitter associated with ground-based low gravity facilities, little data at intermediate gravity levels, and a poor understanding of the effect of important parameters even at earth gravity conditions. The results of over 200 pool boiling experiments with n-perfluorohexane as the test fluid performed aboard the International Space Station (ISS) are presented in this paper. A flat, transparent, constant temperature microheater array was used to perform experiments over a wide range of temperatures (55 °C < Tw < 107.5 °C), pressures (0.58 atm < P < 1.86 atm), subcoolings (1 °C ≤ ΔTsub ≤ 26 °C), and heater sizes (4.2 mm ≤ Lh ≤ 7.0 mm). The boiling process was visualized from the side and bottom. Based on this high quality microgravity data (a/g<10−6), the recently reported gravity scaling parameter for heat flux, which was primarily based on parabolic flight experiments, was modified to account for these new results. The updated model accurately predicts the experimental microgravity data to within ±20%. The robustness of this framework in predicting low gravity heat transfer is further demonstrated by predicting many of the trends in the pool boiling literature that cannot be explained by any single model.

References

References
1.
Di Marco
,
P.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: European Research
,”
J. Jpn. Soc. Microgravity Appl.
,
20
(
4
), pp.
252
263
.
2.
Kim
,
J.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: US Research
,”
J. Jpn. Soc. Microgravity Appl.
,
20
(
4
), pp.
264
271
.
3.
Ohta
,
H.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: Japanese Research
,”
J. Jpn. Soc. Microgravity Appl.
,
20
(
4
), pp.
272
285
.
4.
Di Marco
,
P.
,
Kim
,
J.
, and
Ohta
,
H.
, 2009, “
Boiling Heat Transfer in Reduced Gravity Environments
,”
Advances in Multiphase Flow and Heat Transfer
, Vol.
1
,
L.
Cheng
and
D.
Mewes
, eds.,
Bentham Science Publishers
,
Oak Park, IL
, Chap. II, pp.
53
92
.
5.
Straub
,
J.
, 2001, “
Boiling Heat Transfer and Bubble Dynamics in Microgravity
,”
Adv. Heat Transfer
,
35
, pp.
57
172
.
6.
Di Marco
,
P.
, and
Grassi
,
W.
, 2000, “
Pool Boiling in Microgravity: Assessed Results and Open Issues
,”
Third European Thermal-Sciences Conference
, Sept. 10–13, ETS, Pisa, Italy.
7.
Lee
,
H. S.
,
Merte
,
H.
, Jr.
, and
Chiaramonte
,
F.
, 1997, “
Pool Boiling Curve in Microgravity
,”
J. Thermophys. Heat Transfer
,
11
(
2
), pp.
216
222
.
8.
Lee
,
H. S.
, and
Merte
,
H.
, Jr.
, 1998, “
The Origin of the Dynamic Growth of Vapor Bubbles Related to Vapor Explosion
,”
ASME Trans. J. Heat Transfer
,
120
(
1
), pp.
174
182
.
9.
Lee.
H. S.
,
Merte
,
H.
, Jr.
, and
Keller
,
R. B.
, 1998, “
Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-IIB) and STS-77 (PBE-IIA)
,” Report No. NASA/CR-1998-207410.
10.
DeLombard
,
R.
,
McQuillen
,
J.
, and
Chao
,
D.
, 2008, “
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Nevada, Jan. 7–10.
11.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2012, “
On the Scaling of Pool Boiling Heat Flux With Gravity and Heater Size
,”
ASME Trans. J. Heat Transfer
,
134
(
1
), p.
0115021
.
12.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2010, “
Gravity Scaling Parameter for Pool Boiling Heat Transfer
,”
ASME Trans. J. Heat Transfer
,
132
(
9
), p.
091502
.
13.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2009, “
Subcooled Pool Boiling in Variable Gravity Environments
,”
ASME Trans. J. Heat Transfer
,
131
(
9
), p.
091502
.
14.
Raj
,
R.
, and
Kim
,
J.
, 2010, “
Heater Size and Gravity Based Pool Boiling Regime Map: Transition Criteria Between Buoyancy and Surface Tension Dominated Boiling
,”
ASME Trans. J. Heat Transfer
,
132
(
9
), p.
091503
.
15.
Arnold
,
W. A.
,
Hartman
,
T. G.
, and
McQuillen
,
J.
, 2007, “
Chemical Characterization and Thermal Stressing Studies of Perfluorohexane Fluids for Space-Based Applications
,”
J. Spacecr. Rockets
,
44
(
1
), pp.
94
101
.
16.
Rule
,
T. D.
, and
Kim
,
J.
, 1999, “
Heat Transfer Behavior on Small Heaters During Pool Boiling of FC-72
,”
ASME Trans. J. Heat Transfer
,
121
(
2
), pp.
386
393
.
17.
Colemna
,
H. W.
, and
Steele
,
W.
, 1999,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley
,
New York
.
18.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
, 2003, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME Trans. J. Heat Transfer
,
125
, pp.
75
83
.
19.
Dhir
,
V. K.
, 2006, “
Mechanistic Prediction of Nucleate Boiling Heat Transfer-Achievable or a Hopeless Task
,”
ASME Trans. J. Heat Transfer
,
128
(
1
), pp.
1
12
.
20.
Qui
,
D. M.
,
Dhir
,
V. K.
,
Hasan
,
M. M.
, and
Chao
,
D.
, 2000, “
Single and Multiple Bubble Dynamics During Nucleate Boiling Under Low-Gravity Conditions
,”
Proceedings of the National Heat Transfer Conference
, Begel House, NY, pp.
62
71
.
21.
Oka
,
T.
,
Abe
,
Y.
,
Tanaka
,
K.
,
Mori
,
Y. H.
, and
Nagashima
,
A.
, 1995, “
Pool Boiling of n-Pentane, CFC-113, and Water Under Reduced Gravity: Parabolic Flight Experiments With a Transparent Heater
,”
ASME Trans. J. Heat Transfer
,
117
, pp.
408
417
.
22.
Oka
,
T.
,
Abe
,
Y.
,
Tanaka
,
K.
,
Mori
,
Y. H.
, and
Nagashima
,
A.
, 1996, “
Pool Boiling Heat Transfer in Microgravity
,”
JSME Int. J.
,
39
(
4
), pp.
798
807
.
23.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
, 1973, “
Extended Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes From Finite Bodies
,” NASA Report No. NASA CR-2270.
24.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439.
25.
Ded
,
J. S.
, and
Lienhard
,
J. H.
, 1972, “
The Peak Pool Boiling Heat Flux From Spheres
,”
AIChE J.
,
18
(
2
), pp.
337
342
.
26.
Steinbichler
,
M.
, 2000, “
Experimentelle Untersuchung des gesättigten undunterkühlten Siedens an Miniaturheizflächen unter Mikrogravitation
,” Doctoral Dissertation, Technical University Muenchen, Muenchen.
27.
Di Marco
,
P.
, and
Grassi
,
W.
, 1999, “
About the Scaling of Critical Heat Flux With Gravity Acceleration in Pool Boiling
,” XVII UIT National Heat Transfer Conference, Ferrara, June 30–July 2.
28.
Zell
,
M.
,
Straub
,
J.
, and
Vogel
,
B.
, 1989, “
Pool Boiling Under Microgravity
,”
PCH, PhysicoChem. Hydrodyn.
,
11
, pp.
812
823
.
29.
Sun
,
K. H.
, and
Lienhard
,
J. H.
, 1970, “
The Peak Pool Boiling Heat Flux on Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
13
, pp.
1425
1439
.
30.
Bakhru
,
N.
, and
Lienhard
,
J. H.
, 1972, “
Boiling From Small Cylinders
,”
Int. J. Heat Mass Transfer
,
15
, pp.
2011
2025
.
You do not currently have access to this content.