A framework for scaling pool boiling heat flux is developed using data from various heater sizes over a range of gravity levels. Boiling is buoyancy dominated for large heaters and/or high gravity conditions and the heat flux is heater size independent. The power law coefficient for gravity is a function of wall temperature. As the heater size or gravity level is reduced, a sharp transition in the heat flux is observed at a threshold value of Lh/Lc = 2.1. Below this threshold value, boiling is surface tension dominated and the dependence on gravity is smaller. The gravity scaling parameter for the heat flux in the buoyancy dominated boiling regime developed in the previous work is updated to account for subcooling effect. Based on this scaling parameter and the transition criteria, a methodology for predicting heat flux in the surface tension dominated boiling regime, typically observed under low-gravity conditions, is developed. Given the heat flux at a reference gravity level and heater size, the current framework allows the prediction of heat flux at any other gravity level and/or heater size under similar experimental conditions. The prediction is validated using data at over a range of subcoolings (11 °C ≤ ΔTsub ≤ 32.6 °C), heater sizes (2.1 mm ≤ Lh ≤ 7 mm), and dissolved gas concentrations (3 ppm ≤ cg ≤ 3500 ppm). The prediction errors are significantly smaller than those from correlations currently available in the literature.

References

1.
Rohsenow
,
W. M.
, 1962, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
ASME J. Heat Transfer
,
84
, pp.
969
976
.
2.
Foster
,
H. K.
, and
Grief
,
R.
, 1959, “
Heat Transfer to a Boiling Liquid—Mechanisms and Correlations
,”
ASME J. Heat Transfer
,
81
, p.
43
53
.
3.
Stephan
,
K.
, and
Abdelsalam
,
M.
, 1980, “
Heat Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
, pp.
73
87
.
4.
Straub
,
J.
, 2001, “
Boiling Heat Transfer and Bubble Dynamics in Microgravity
,”
Adv. Heat Transfer
,
35
, pp.
57
172
.
5.
Kannengieser
,
O.
,
Colin
,
C.
,
Bergez
,
W.
, and
Lacapere
,
J.
, 2009, “
Nucleate Pool Boiling on a Flat Plate Heater Under Microgravity Conditions: Results of Parabolic Flight, and Development of a Correlation Predicting Heat Flux Variation due to Gravity
,”
Proceedings of the 7th ECI International Conference on Boiling Heat Transfer
, Florianopolis, Brazil, May 3–7.
6.
Kutateladze
,
S. S.
, 1948, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
, (3), pp.
10
12
.
7.
Chang
,
Y. P.
, 1957, “
A Theoretical Analysis of Heat Transfer in Natural Convection and in Boiling
,”
ASME J. Heat Transfer
,
79
, pp.
1501
1513
.
8.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Rep., AECU-4439, June.
9.
Kirishenko
,
Y. A.
, and
Cherniakov
,
P. S.
, 1973, “
Determination of the First Critical Thermal Flux on Flat Heaters
,”
J. Eng. Phys.
,
20
, pp.
699
702
.
10.
Kandilkar
,
S. G.
, 2001, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects Contact Angle and Orientations
,”
ASME J. Heat Transfer
,
123
, pp.
1071
1079
.
11.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2009, “
Subcooled Pool Boiling in Variable Gravity Environments
,”
ASME J. Heat Transfer
,
131
(
9
), p.
091502
.
12.
Raj
,
R.
, and
Kim
,
J.
, 2010, “
Heater Size and Gravity Based Pool Boiling Regime Map: Transition Criteria Between Buoyancy and Surface Tension Dominated Boiling
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091503
.
13.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2010, “
Gravity Scaling Parameter for Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091502
.
14.
Bakhru
,
N.
, and
Lienhard
,
J. H.
, 1972, “
Boiling from Small Cylinders
,”
Int. J. Heat Mass Transfer
,
15
, pp.
2011
2025
.
15.
Arnold
,
W. A.
,
Hartman
,
T. G.
, and
McQuillen
,
J.
, 2007, “
Chemical Characterization and Thermal Stressing Studies of Perfluorohexane Fluids for Space-Based Applications
,”
J. Spacecr. Rockets
,
44
(
1
), pp.
94
101
.
16.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
, 1973, “
Hydrodynamic Predictions of Peak Pool-Boiling Heat Fluxes from Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
152
158
.
17.
Oka
,
T.
,
Abe
,
Y.
,
Tanaka
,
K.
,
Mori
,
Y. H.
, and
Nagashima
,
A.
, 1992, “
Observational Study of Pool Boiling Under Microgravity
,”
JSME Int. J. Ser. II
,
35
, pp.
280
286
.
18.
Oka
,
T.
,
Abe
,
Y.
,
Tanaka
,
K.
,
Mori
,
Y. H.
, and
Nagashima
,
A.
, 1995, “
Pool Boiling of n-Pentane, CFC-113, and Water under Reduced Gravity: Parabolic Flight Experiments With a Transparent Heater
,”
ASME J. Heat Transfer
,
117
, pp.
408
417
.
19.
Di Marco
,
P.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: European Research
,”
J. Jpn. Soc. Microgravity Appl.
,
20
(
4
), pp.
252
263
.
20.
Kim
,
J.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: US Research
,”
J. Jpn. Soc. Microgravity Appl.
,
20
(
4
), pp.
264
271
.
21.
Ohta
,
H.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: Japanese Research
,”
J. Jpn. Soc. Microgravity Appl.
,
20
(
4
), pp.
272
285
.
22.
Di Marco
,
P.
, and
Grassi
,
W.
, 2000, “
Pool Boiling in Microgravity: Assessed Results and Open Issues
,”
Third European Thermal-Sciences Conference
, September 10–13, 2000, ETS, Pisa, Italy.
23.
Chiaramonte
,
F. P.
, and
Joshi
,
J. A.
, 2004, “
Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology
,” Technical Report, NASA/TM—2004-212940.
24.
Henry
,
C. D.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2006, “
Dissolved Gas Effects on Thermocapillary Convection During Subcooled Boiling in Reduced Gravity Environments
,”
Heat Mass Transfer
,
42
, pp.
919
928
.
25.
Kim
,
J.
,
Benton
,
J. F.
and
Wisniewski
,
D.
, 2002, “
Pool Boiling Heat Transfer on Small Heaters: Effect of Gravity and Subcooling
,”
Int. J. Heat Mass Transfer
,
45
(
9
), pp.
3919
3932
.
26.
Lee
,
H. S.
, 2002, “
Mechanisms of Steady-State Nucleate Pool Boiling in Microgravity
,”
Ann. N.Y. Acad. Sci.
,
974
, pp.
447
462
.
27.
Zuber
,
N.
,
Tribus
,
M.
, and
Westwater
,
J. W.
, 1961, “
The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids
,”
International Developments in Heat Transfer: Proceedings of 1961-62 International Heat Transfer Conference, Boulder, CO
, pp.
230
236
.
28.
Ivey
,
H. J.
, and
Morris
,
D. J.
, 1962, “
On the Relevance of the Vapor-Liquid Exchange Mechanism for Subcooled Boiling Heat Transfer at High Pressure
,” United Kingdom Energy Authority, Report No. AEEW-R137.
29.
McNiel
,
A. C.
, 1992, “
Pool Boiling Critical Heat Flux in a Highly Wetting Liquid
,” Masters thesis, Mechanical Engineering, University of Minnesota, Minneapolis, MN.
30.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
, 2003, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer
,
125
, pp.
75
83
.
31.
Inoue
,
T.
,
Kawae
,
N.
, and
Monde
,
M.
, 1998, “
Effect of Subcooling on Critical Heat Flux During Pool Boiling on a Horizontal Wire
,”
Heat Mass Transfer
,
33
, pp.
481
488
.
32.
Mudawar
,
I.
, and
Anderson
,
T. M.
, 1990, “
Parametric Investigation Into the Effects of Pressure, Subcooling, Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems for High-Power-Density Electronic Chips
,”
ASME J. Electron. Packag.
,
112
, pp.
375
382
.
33.
DeLombard
,
R.
,
McQuillen
,
J.
, and
Chao
,
D.
, 2008, “
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Nevada, Jan. 7–10.
You do not currently have access to this content.