Thermal rectification is a phenomenon in which transport is preferred in one direction over the opposite. Although observations of thermal rectification have been elusive, it could be useful in many applications such as thermal management of electronics and improvement of thermoelectric devices. The current work explores the possibility of thermally rectifying devices with the use of nanostructured interfaces. Interfaces can theoretically result in thermally rectifying behavior because of the difference in phonon frequency content between two dissimilar materials. The current work shows an effective rectification of greater than 25% in a device composed of two different materials divided equally by a single planar interface.

References

References
1.
Starr
,
C.
, 1935, “
The Copper Oxide Rectifier
,”
J. Appl. Phys.
,
7
, pp.
15
19
.
2.
Walker
,
D. G.
, 2006, “
Thermal Rectification Mechanisms Including Noncontinuum Effects
,”
Proceedings of the Joint ASME-ISHMT Heat Transfer Conference
.
3.
Terraneo
,
M.
,
Peyrard
,
M.
, and
Casati
,
G.
, 2002, “
Controlling the Eenergy Flow in Non-Linear Lattices: A Model for a Thermal Rectifier
,”
Phys. Rev. Lett.
,
88
(
9
), p.
094302
.
4.
Li
,
B.
,
Wang
,
L.
, and
Casati
,
G.
, 2004, “
Thermal Diode: Rectification of Heat Flux
,”
Phys. Rev. Lett.
,
93
(
18
), p.
184301
.
5.
Chang
,
C. W.
,
Okawa
,
D.
,
Majumdar
,
A.
, and
Zettl
,
A.
, 2006, “
Solid-State Thermal Rectifier
,”
Science
,
314
, pp.
1121
1124
.
6.
Miller
,
J.
,
Jang
,
W.
, and
Dames
,
C.
, 2009, “
Thermal Rectification by Ballistic Phonons in Asymmetric Nanostructures
,”
Proceedings of the ASME 2009 Heat Transfer Summer Conference
.
7.
Roberts
,
N.
, and
Walker
,
D.
, 2011, “
A Review of Thermal Rectification Observations and Mechanisms in Solid Materials
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
648
662
.
8.
Wang
,
S.-C.
, and
Liang
,
X.-G.
, 2011, “
Investigation of Thermal Rectification in Bi-Layer Nanofilm by Molecular Dynamics
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
680
685
.
10.
Plimpton
,
S.
, “
LAMMPS—Large-Scale Atomic/Molecular Massivley Parellel Simulator
,” http://lammps.sandia.gov/http://lammps.sandia.gov/.
11.
Lukes
,
J. R.
,
Li
,
D.
, Liang, X.-G., and Tien, C.-L., 2000, “
Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
536
543
.
12.
Haenssler
,
F.
,
Gamper
,
K.
, and
Serin
,
B.
, 1970, “
Constant-Volume Specific Heat of Solid Argon
,”
J. Low Temp. Phys.
,
3
, pp.
23
28
.
13.
Keeler
,
G. J.
, and
Batchelder
,
D. N.
, 1970, “
Measurement of the Elastic Constants of Argon From 3 to 77 Degrees K
,”
J. Phys. C
,
3
(
3
), pp.
510
522
.
14.
Touloukian
,
Y.
,
Liley
,
P.
, and
Saxena
,
S.
, 1970,
Thermal Conductivity: Nonmetallic Liquids and Gases,
IFI/Plenum
,
New York
.
15.
Christen
,
D. K.
, and
Pollack
,
G. L.
, 1975, “
Thermal Conductivity of Solid Argon
,”
Phys. Rev. B
,
12
(
8
), pp.
3380
3391
.
16.
Ju
,
S.
, and
Liang
,
X.
, 2010, “
Investigation of Argon Nanocrystalline Thermal Conductivity by Molecular Dynamics Simulation
,”
J. Appl. Phys.
,
108
, p.
104307
.
17.
Choi
,
S.-H.
,
Maruyama
,
S.
, Kim, K.-K., and Lee, J.-H., 2003, “
Evaluation of the Phonon Mean Free Path in Thin Films by Using Classical Molecular Dynamics
,”
J. Korean Phys. Soc.
,
43
(
5
), pp.
747
753
.
18.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves
,”
Nano Lett.
,
5
(
7
), pp.
1221
1225
.
19.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
(
14
), p.
144306
.
20.
Roberts
,
N.
,
Li
,
D.
, and
Walker
,
D.
, 2009, “
Molecular Dynamics Simulation of Thermal Conductivity of Nanocrystalline Composite Films
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2002
2008
.
21.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2006, “
Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction
,”
Adv. Heat Transfer
,
39
, pp.
169
255
.
22.
Dames
,
C.
, 2009, “
Solid-State Thermal Rectification With Existing Bulk Materials
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061301
.
23.
Go
,
D. B.
, and
Sen
,
M.
, 2010, “
On the Condition for Thermal Rectification Using Bulk Materials
,”
ASME J. Heat Transfer
,
132
,
p.
124502
.
24.
Clayton
,
F.
, and
Batchelder
,
D. N.
, 1973, “
Temperature and Volume Dependence of the Thermal Conductivity of Solid Argon
,”
J. Phys. C
,
6
(
7
), pp.
1213
1228
.
25.
Dudkin
,
V. V.
,
Gorodilov
,
B. Y.
,
Krivchikov
,
A. I.
, and
Manzhelii
,
V. G.
, 2000, “
Thermal Conductivity of Solid Krypton With Methane Admixture
,”
Low Temp. Phys.
,
26
(
9–10
), pp.
762
766
.
26.
Roberts
,
N.
, and
Walker
,
D.
, 2010, “
Phonon Wave-Packet Simulations of Ar/Kr Interfaces for Thermal Rectification
,”
J. Appl. Phys.
,
108
(
12
),
p.
123515
.
27.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp.
605
668
.
28.
Hopkins
,
P.
, and
Norris
,
P.
, 2009, “
Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces
,”
ASME J. Heat Transfer
,
131
, p.
022402
.
29.
Stevens
,
R.
,
Zhigilei
,
L.
, and
Norris
,
P.
, 2007, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3977
3989
.
30.
Dobbs
,
E.
,
Figgins
,
B.
, and
Jones
,
G.
, 1958, “
Properties of Solid Argon
,”
Il Nuovo Cimento
,
9
, pp.
32
35
.
31.
Chen
,
Y. F.
,
Li
,
D. Y.
,
Yang
,
J. K.
,
Yu
,
Y. H.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
, 2004, “
Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires
,”
Physica B
,
349
(
1–4
), pp.
270
280
.
You do not currently have access to this content.