The present investigation considers the fully developed electro-osmotic flow of power-law fluids in a planar microchannel subject to constant wall heat fluxes. Using an approximate velocity distribution, closed form expressions are obtained for the transverse distribution of temperature and Nusselt number. The approximate solution is found to be quite accurate, especially for the values of higher than ten for the dimensionless Debye-Huckel parameter where the exact values of Nusselt number are predicted. The results demonstrate that a higher value of the dimensionless Debye-Huckel parameter is accompanied by a higher Nusselt number for wall cooling, whereas the opposite is true for wall heating case. Although to increase the dimensionless Joule heating term is to decrease Nusselt number for both pseudoplastic and dilatant fluids, nevertheless its effect on Nusselt number is more pronounced for dilatants. Furthermore, to increase the flow behavior index is to decrease the Nusselt number for wall cooling, whereas the contrary is right for the wall heating case. Depending on the value of flow parameters, a singularity is observed in the Nusselt number values of the wall heating case.

1.
Laser
,
D. J.
, and
Santiago
,
J. G.
, 2004, “
A Review of Micropumps
,”
J. Micromech. Microeng.
,
14
, pp.
R35
R64.
2.
Wang
,
X.
,
Wang
,
S.
,
Gendhar
,
B.
,
Cheng
,
C.
,
Byun
,
C. K.
,
Li
,
G.
,
Zhao
,
M.
, and
Liu
,
S.
, 2009, “
Electroosmotic Pumps for Microflow Analysis
,”
TrAC, Trends Anal. Chem.
,
28
, pp.
64
74
.
3.
Burgreen
,
D.
, and
Nakache
,
F. R.
, 1964, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
, pp.
1084
1091
.
4.
Rice
,
C. L.
, and
Whitehead
,
R.
, 1965, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
, pp.
4017
4024
.
5.
Levine
,
S.
,
Marriott
,
J.R.
,
Neale
,
G.
, and
Epstein
,
N.
, 1975, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta Potentials
,”
J. Colloid Interface Sci.
,
52
, pp.
136
149
.
6.
Philip
,
J. R.
, and
Wooding
,
R. A.
, 1970, “
Solution of the Poisson-Boltzmann Equation About a Cylindrical Particle
,”
J. Chem. Phys.
,
52
, pp.
953
959
.
7.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
, 2002, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
, pp.
2203
2221
.
8.
Yang
,
C.
, and
Li
,
D.
, 1998, “
Analysis of Electrokinetic Effects on the Liquid Flow in Rectangular Microchannels
,”
Colloids Surf. A
,
143
, pp.
339
353
.
9.
Wang
,
C.Y.
,
Liu
,
Y.H.
, and
Chang
,
C.C.
, 2008, “
Analytical Solution of Electro-Osmotic Flow in a Semicircular Microchannel
,”
Phys. Fluids
,
20
, p.
063105
.
10.
Xuan
,
X.
, and
Li
,
D.
, 2005, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
,
289
, pp.
291
303
.
11.
Talapatra
,
S.
, and
Chakraborty
,
S.
, 2008, “
Double Layer Overlap in ac Electroosmosis
,”
Euro. J. Mech. B
,
27
, pp.
297
308
.
12.
Yang
,
R. J.
,
Fu
,
L. M.
, and
Hwang
,
C. C.
, 2001, “
Electroosmotic Entry Flow in a Microchannel
,”
J. Colloid Interface Sci.
,
244
, pp.
173
179
.
13.
Maynes
,
D.
, and
Webb
,
B. W.
, 2003, “
Fully Developed Electroosmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1359
1369
.
14.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
, 1998, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4229
4249
.
15.
Chen
,
C. H.
, 2009, “
Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating
,”
ASME J. Heat Transfer
,
131
, p.
022401
.
16.
Sadeghi
,
A.
, and
Saidi
,
M.H.
, 2010, “
Viscous Dissipation Effects on Thermal Transport Characteristics of Combined Pressure and Electroosmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3782
3791
.
17.
Dey
,
R.
,
Chakraborty
,
D.
, and
Chakraborty
,
S.
, 2011, “
Analytical Solution for Thermally Fully Developed Combined Electroosmotic and Pressure-Driven Flows in Narrow Confinements With Thick Electrical Double Layers
,”
ASME J. Heat Transfer
,
133
, p.
024503
.
18.
Kamisli
,
F.
, 2003, “
Flow Analysis of a Power-Law Fluid Confined in an Extrusion Die
,”
Int. J. Eng. Sci.
,
41
, pp.
1059
1083
.
19.
Zimmerman
,
W. B.
,
Rees
,
J. M.
, and
Craven
,
T. J.
, 2006, “
Rheometry of Non-Newtonian Electrokinetic Flow in a Microchannel T-Junction
,”
Microfluid. Nanofluid.
,
2
, pp.
481
492
.
20.
Koh
,
Y. H.
,
Ong
,
N. S.
,
Chen
,
X. Y.
,
Lam
,
Y. C.
, and
Chai
,
J. C.
, 2004, “
Effect of Temperature and Inlet Velocity on the Flow of a Non-Newtonian Fluid
,”
Int. Commun. Heat Mass Transfer
,
31
, pp.
1005
1013
.
21.
Das
,
M.
,
Jain
,
V. K.
, and
Ghoshdastidar
,
P. S.
, 2008, “
Fluid Flow Analysis of Magnetorheological Abrasive Flow Finishing (MRAFF) Process
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
415
426
.
22.
Berli
,
C. L. A.
, and
Olivares
,
M. L.
, 2008, “
Electrokinetic Flow of Non-Newtonian Fluids in Microchannels
,”
J. Colloid Interface Sci.
,
320
, pp.
582
589
.
23.
Bharti
,
R .P.
,
Harvie
,
D. J. E.
, and
Davidson
,
M. R.
, 2009, “
Electroviscous Effects in Steady Fully Developed Flow of a Power-Law Liquid Through a Cylindrical Microchannel
,”
Int. J. Heat Fluid Flow
,
30
, pp.
804
811
.
24.
Otevrel
,
M.
, and
Kleparnik
,
K.
, 2002, “
Electroosmotic Flow in Capillary Channels Filled With Nonconstant Viscosity Electrolytes: Exact Solution of the Navier-Stokes Equation
,”
Electrophoresis
,
23
, pp.
3574
3582
.
25.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
, 2008, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
, pp.
503
510
.
26.
Tang
,
G. H.
,
Li
,
X. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Electroosmotic Flow of Non-Newtonian Fluid in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
157
, pp.
133
137
.
27.
Das
,
S.
, and
Chakraborty
,
S.
, 2006, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
, pp.
15
24
.
28.
Probstein
,
R.F.
, 1994,
Physicochemical Hydrodynamics
,
2nd ed.
,
Wiley
,
New York.
29.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows, Fundamentals and Simulation
,
Springer
,
New York.
30.
Maynes
,
D.
, and
Webb
,
B. W.
, 2003, “
Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels
,”
J. Heat Transfer
,
125
, pp.
889
895
.
31.
Burmeister
,
L. C.
, 1983,
Convective Heat Transfer
,
Wiley
,
New York.
You do not currently have access to this content.