This study provides a new inverse approach based on fuzzy inference for solving the problem of estimating heat flux distribution at the metal-mold interface in the continuous casting process. Measured temperatures acquired with the thermocouples buried in the mold are used to obtain corresponding inference results with the fuzzy inference. Then according to the importance of measured information for estimating the heat flux distribution, inference results are weighted to realize estimation of heat flux distribution at the metal-mold interface. Some numerical tests are presented to discuss the validity of the present approach by using different initial guesses of heat flux distribution, the number of measuring points, and measurement errors. In comparison with the conjugate gradient method, it is concluded that the method based on fuzzy inference is of a good anti-ill-posed characteristic.

1.
Tieu
,
A. K.
, and
Kim
,
I. S.
, 1997, “
Simulation of the Continuous Casting Process by a Mathematical Model
,”
Int. J. Mech. Sci.
0020-7403,
39
(
2
), pp.
185
192
.
2.
Barone
,
M. R.
, and
Caulk
,
D. A.
, 1993, “
A New Method for Thermal Analysis of Die Casting
,”
ASME J. Heat Transfer
0022-1481,
115
(
2
), pp.
284
293
.
3.
Clark
,
L. D.
,
Davey
,
K.
,
Rosindate
,
I.
, and
Hinduja
,
S.
, 2000, “
Determination of Heat Transfer Coefficients Using a 1-D Flow Model Applied to Irregular Shaped Cooling Channels in Pressure Diecasting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
678
690
.
4.
Janik
,
M.
, and
Dyja
,
H.
, 2004, “
Modelling of Three-Dimensional Temperature Field Inside the Mould During Continuous Casting of Steel
,”
J. Mater. Process. Technol.
0924-0136,
157–158
, pp.
177
182
.
5.
Fachinotti
,
V. D.
, and
Cardona
,
A.
, 2003, “
Constitutive Models of Steel Under Continuous Casting Conditions
,”
J. Mater. Process. Technol.
0924-0136,
135
(
1
), pp.
30
43
.
6.
Amin
,
M. R.
, and
Gawas
,
N. L.
, 2003, “
Conjugate Heat Transfer and Effects of Interfacial Heat Flux During the Solidification Process of Continuous Castings
,”
ASME J. Heat Transfer
0022-1481,
125
(
2
), pp.
339
349
.
7.
Arunkumar
,
S.
,
Sreenivas Rao
,
K. V.
, and
Prasanna Kumar
,
T. S.
, 2008, “
Spatial Variation of Heat Flux at the Metal-Mold Interface Due to Mold Filling Effects in Gravity Die-Casting
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2676
2685
.
8.
Hallam
,
C. P.
, and
Griffiths
,
W. D.
, 2004, “
A Model of The Interfacial Heat-Transfer Coefficient for the Aluminum Gravity Die-Casting Process
,”
Metall. Mater. Trans. B
1073-5615,
35
, pp.
721
733
.
9.
Majumdar
,
J.
,
Raychauduri
,
B. C.
, and
Dasgupta
,
S.
, 1981, “
An Instrumentation Scheme for Multipoint Measurement of Mold-Metal Gap in an Ingot Casting System
,”
Int. J. Heat Mass Transfer
0017-9310,
24
(
7
), pp.
1089
1095
.
10.
Alizadeh
,
M.
,
Jahromi
,
A. J.
, and
Abouali
,
O.
, 2008, “
New Analytical Model for Local Heat Flux Density in the Mold in Continuous Casting of Steel
,”
Comput. Mater. Sci.
0927-0256,
44
(
2
), pp.
807
812
.
11.
Lau
,
F.
,
Lee
,
W. B.
,
Xiong
,
S. M.
, and
Liu
,
B. C.
, 1998, “
A Study of the Interfacial Heat Transfer Between an Iron Casting and a Metallic Mould
,”
J. Mater. Process. Technol.
0924-0136,
79
, pp.
25
29
.
12.
Nowak
,
I.
,
Smolka
,
J.
, and
Nowak
,
A. J.
, 2010, “
An Effective 3-D Inverse Procedure to Retrieve Cooling Conditions in an Aluminum Alloy Continuous Casting Problem
,”
Appl. Therm. Eng.
1359-4311,
30
(
10
), pp.
1140
1151
.
13.
Prasanna Kumar
,
T. S.
, and
Kamath
,
H. C.
, 2004, “
Estimation of Multiple Heat-Flux Components at the Metal/Mold Interface in Bar and Plate Aluminum Alloy Castings
,”
Metall. Mater. Trans. B
1073-5615,
35
(
3
), pp.
575
585
.
14.
Zhang
,
L. Q.
,
Li
,
L. X.
,
Ju
,
H.
, and
Zhu
,
B. W.
, 2010, “
Inverse Identification of Interfacial Heat Transfer Coefficient Between the Casting and Metal Mold Using Neural Network
,”
Energy Convers. Manage.
0196-8904,
51
(
10
), pp.
1898
1904
.
15.
Xu
,
R.
, and
Naterer
,
G. F.
, 2001, “
Inverse Method With Heat and Entropy Transport in Solidification Processing of Materials
,”
J. Mater. Process. Technol.
0924-0136,
112
, pp.
98
108
.
16.
Timothy
,
J. R.
, 2010,
Fuzzy Logic With Engineering Applications
,
3rd ed.
,
Wiley
,
Chichester, West Sussex
.
17.
Chang
,
C. S.
,
Chen
,
J. M.
,
Srinivasan
,
D.
,
Wen
,
F. S.
, and
Liew
,
A. C.
, 1997, “
Fuzzy Logic Approach in Power System Fault Section Identification
,”
IEE Proc.: Gener. Transm. Distrib.
1350-2360,
144
(
5
), pp.
406
414
.
18.
Wang
,
H. M.
,
Li
,
G. R.
,
Lei
,
Y. C.
,
Zhao
,
Y. T.
,
Dai
,
Q. X.
, and
Wang
,
J. J.
, 2005, “
Mathematical Heat Transfer Model Research for the Improvement of Continuous Casting Slab Temperature
,”
ISIJ Int.
0915-1559,
45
(
9
), pp.
1291
1296
.
19.
Sargolzaei
,
J.
,
Khoshnoodi
,
M.
,
Saghatoleslami
,
N.
, and
Mousavi
,
M.
, 2008, “
Fuzzy Inference System to Modeling of Crossflow Milk Ultrafiltration
,”
Appl. Soft Comput.
1568-4946,
8
(
1
), pp.
456
465
.
20.
Broekhoven
,
E. V.
, and
Baets
,
B. D.
, 2006, “
Fast and Accurate Center of Gravity Defuzzification of Fuzzy System Outputs Defined on Trapezoidal Fuzzy Partitions
,”
Fuzzy Sets Syst.
0165-0114,
157
, pp.
904
918
.
21.
Yin
,
H. B.
, and
Yao
,
M.
, 2007, “
Inverse Problem-Based Analysis on Non-Uniform Profiles of Thermal Resistance Between Strand and Mould for Continuous Round Billets Casting
,”
J. Mater. Process. Technol.
0924-0136,
183
, pp.
49
56
.
22.
Han
,
H. N.
,
Lee
,
J. E.
,
Yeo
,
T. J.
,
Won
,
Y. M.
,
Kim
,
K. H.
,
Oh
,
K. H.
, and
Yoon
,
J. K.
, 1999, “
A Finite Element Model for 2-Dimensional Slice of Cast Strand
,”
ISIJ Int.
0915-1559,
39
(
5
), pp.
445
454
.
You do not currently have access to this content.