Presented are the results of experiments that investigated nucleate boiling of PF-5060 on microporous Cu surface layers at saturation and 10 K, 20 K, and 30 K subcooling. The three microporous layers, electrochemically deposited on 10×10mm2 Cu substrates and investigated herein, are 139μm, 171μm, and 220μm thick. The critical heat flux increases linearly with increased subcooling, ΔTsub, at an average rate of 4.5%/K. For the 171μm thick, Cu microporous surface, saturation boiling CHF of 27.8W/cm2 increases to 63.25W/cm2 at ΔTsub=30K, while the saturation hMNB of 13.5W/cm2K decreases slightly to 12.7W/cm2K at ΔTsub=30K. The values of the surface superheat, ΔTsat, at hMNB and CHF increase from 2.0 K and 2.16 K at saturation to 4.2 and 6.42 K at 30 K subcooling.

1.
Anderson
,
T. M.
, and
Mudawar
,
I.
, 1989, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
752
759
.
2.
Chang
,
J. Y.
, and
You
,
S. M.
, 1996, “
Heater Orientation Effects on Pool Boiling on Micro-Porous Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
937
943
.
3.
Rainey
,
K. N.
, and
You
,
S. M.
, 2000, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
509
516
.
4.
Jiang
,
Y. Y.
,
Wang
,
W. C.
,
Wang
,
D.
, and
Wang
,
B. X.
, 2001, “
Boiling Heat Transfer on Machined Porous Surfaces With Structured Optimization
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
443
456
.
5.
El-Genk
,
M. S.
, and
Bostanci
,
H.
, 2003, “
Saturation Boiling of HFE-7100 from a Copper Surface, Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1841
1854
.
6.
El-Genk
,
M. S.
, and
Bostanci
,
H.
, 2003, “
Combined Effects of Subcooling and Surface Orientation on Pool Boiling of HFE-7100 From a Simulated Electronic Chip
,”
Journal of Experimental Heat Transfer
0891-6152,
16
, pp.
281
301
.
7.
Wei
,
J. J.
, and
Honda
,
H.
, 2003, “
Effect of Fin Geometry on Boiling Heat Transfer From Silicon Chips With Micro-Pin-Fins Immersed in FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4059
4070
.
8.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 2003, “
Effects of Varying Geometrical Parameters on Boiling From Microfabricated Enhanced Structures
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
103
109
.
9.
Rajalu
,
K. G.
,
Kumar
,
R.
,
Mohanty
,
B.
, and
Varma
,
H. K.
, 2004, “
Enhancement of Nucleate Pool Boiling Heat Transfer Coefficient by Reentrant Cavity Surfaces
,”
Heat Mass Transfer
0947-7411,
41
, pp.
127
132
.
10.
Webb
,
R. L.
, 2004, “
Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1051
1059
.
11.
Vemuri
,
S.
, and
Kim
,
K. J.
, 2005, “
Pool Boiling of Saturated FC-72 on Nano-Porous Surface
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
27
31
.
12.
El-Genk
,
M. S.
, and
Parker
,
J. L.
, 2005, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
J. Energy Conversion and Management
,
46
, pp.
2455
2481
.
13.
Jung
,
J. -Y.
, and
Kwak
,
H. -Y.
, 2006, “
Effect of Surface Condition on Boiling Heat Transfer from Silicon Chip With Submicron-Scale Roughness
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4543
4551
.
14.
Yu
,
C. K.
,
Lu
,
D. C.
, and
Cheng
,
T. C.
, 2006, “
Pool Boiling Heat Transfer on Artificial Micro-Cavity Surfaces in Dielectric Fluid FC-72
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
2092
2099
.
15.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Gao
,
A.
, and
Ajayan
,
P. M.
, 2006, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
0026-2692,
37
, pp.
1158
1164
.
16.
Kim
,
J. H.
, 2006, “
Enhancement of Pool Boiling Heat Transfer Using Thermally-Conductive Microporous Coating Techniques
,” Ph.D. thesis, University of Texas, Arlington, TX.
17.
Kim
,
J. H.
,
Kashinath
,
M. R.
,
Kwark
,
S. M.
, and
You
,
S. M.
, 2007, “
Optimization of Microporous Structures in Enhanced Pool Boiling Heat Transfer of Saturated R-123, FC-72, and Water
,”
ASME
Paper No. HT2007-32339.
18.
Yu
,
C. K.
, and
Lu
,
D. C.
, 2007, “
Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3624
3637
.
19.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
, 2007, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4023
4038
.
20.
El-Genk
,
M. S.
, and
Parker
,
J. L.
, 2008, “
Nucleate Boiling of FC-72 and HFE-7100 on Porous Graphite at Different Orientations and Liquid Subcooling
,”
J. Energy Conversion and Management
,
49
, pp.
733
750
.
21.
Kim
,
Y. -Ho
,
Lee
,
K. -J.
, and
Han
,
D.
, 2008, “
Pool Boiling Enhancement With Surface Treatments
,”
J. Heat Mass Transfer
,
45
, pp.
55
60
.
22.
Li
,
S.
,
Furberg
,
R.
,
Toprak
,
M. S.
,
Palm
,
B.
, and
Muhammed
,
M.
, 2008, “
Nature-Inspired Boiling Enhancement by Novel Nanostructure Macroporous Surfaces
,”
Adv. Funct. Mater.
1616-301X,
18
, pp.
2215
2220
.
23.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2005, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3736
3752
.
24.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2006, “
Effect of Surface Orientation on Nucleate Boiling of FC-72 on Porous Graphite
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1159
1175
.
25.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2009, “
Saturation Boiling of HFE-7100 Dielectric Liquid on Copper Surfaces With Corner Pins at Different Inclinations
,”
J. Enhanced Heat Transfer
1065-5131,
16
, pp.
103
122
.
26.
Watwe
,
A. A.
,
Bar-Cohen
,
A.
, and
McNeil
,
A.
, 1997, “
Combined pressure and Subcooling Effects on Pool Boiling From a PPGA Chip Package
,”
J. Electron. Packag.
1043-7398,
119
, pp.
95
105
.
27.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
, 2003, “
Effect of Pressure, Subcooling and Dissolved Gas on Pool Boiling Heat Transfer From Microporous, Square Pin-Finned Surfaces in FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
23
35
.
28.
Shin
,
H. -C.
, and
Liu
,
M.
, 2004, “
Copper Foam Structures With Highly Porous Nanostructured Walls
,”
Chem. Mater.
0897-4756,
16
, pp.
5460
5464
.
29.
Sriraman
,
S. R.
, and
Banerjee
,
D.
, 2007, “
Pool Boiling Studies on Nano-Structured Surfaces
,”
ASME
Paper No. IMECE2007-42581.
30.
El-Genk
,
M. S.
, and
Ali
,
A. F.
, 2010 “
Enhancement of Saturation Boiling of PF-5060 on Micro-Porous Copper Dendrites Surfaces
,”
J. Heat Transfer
0022-1481,
132
, p.
071501
.
31.
El-Genk
,
M. S.
, and
Ali
,
A. F.
, 2010, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
0301-9322,
36
, pp.
780
792
.
32.
Albertson
,
C. E.
, 1977, “
Boiling Heat Transfer and Method
,” U.S. Patent No. 4018264.
33.
Ghiu
,
C. -D.
, 2007, “
Pool Boiling From Enhances Structure Under Confinement
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
34.
Furberg
,
R.
, 2006, “
Enhanced Boiling Heat Transfer from a Novel Nanodentritic Microporous Copper Structure
,” Ph.D. thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden.
35.
Furberg
,
R.
,
Li
,
S.
,
Palm
,
B.
,
Toprak
,
M.
, and
Muhammed
,
M.
, 2006, “
Dendritically Ordered Nano-particles in a Micro-Porous Structure for Enhanced Boiling
,”
Proceedings of the 13th International Heat Transfer Conference
, Sydney, Australia, Paper No. NAN-07.
36.
Shin
,
H. C.
,
Dong
,
J.
, and
Liu
,
M.
, 2003, “
Nanoporous Structure Prepared by an Electrochemical Deposition Processes
,”
Adv. Mater.
0935-9648,
15
, pp.
1610
1614
.
37.
Kline
,
S. J.
, 1985, “
The Purposes of Uncertainty Analysis
,”
J. Fluids Eng.
0098-2202,
107
, pp.
153
160
.
You do not currently have access to this content.