A mathematical model is developed to represent and predict the dropwise condensation phenomenon on nonwetting surfaces having hydrophobic or superhydrophobic (contact angle greater than 150 deg) features. The model is established by synthesizing the heat transfer through a single droplet with the drop size distribution. The single droplet heat transfer is analyzed as a combination of the vapor-liquid interfacial resistance, the resistance due to the conduction through the drop itself, the resistance from the coating layer, and the resistance due to the curvature of the drop. A population balance model is adapted to develop a drop distribution function for the small drops that grow by direct condensation. Drop size distribution for large drops that grow mainly by coalescence is obtained from a well-known empirical equation. The evidence obtained suggests that both the single droplet heat transfer and drop distribution are significantly affected by the contact angle. More specifically, the model results indicate that a high drop-contact angle leads to enhancing condensation heat transfer. Intense hydrophobicity, which produces high contact angles, causes a reduction in the size of drops on the verge of falling due to gravity, thus allowing space for more small drops. The simulation results are compared with experimental data, which were previously reported.

1.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
, 1930, “
Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform
,”
Forsch. Ingenieurwes.
0015-7899,
1
(
2
), pp.
53
63
.
2.
Welch
,
J.
, and
Westwater
,
J. W.
, 1961, “
Microscopic Study of Dropwise Condensation
,”
ASME International Developments in Heat Transfer
,
2
, pp.
302
309
.
3.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
, 1964, “
Heat-Transfer Measurements During Dropwise Condensation of Steam
,”
Int. J. Heat Mass Transfer
0017-9310,
7
, pp.
272
273
.
4.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
, 1999,
Handbook of Phase Change: Boiling and Condensation
,
Taylor & Francis
,
Philadelphia, PA
.
5.
Ma
,
X.
,
Rose
,
J. W.
,
Xu
,
D.
,
Lin
,
J.
, and
Wang
,
B.
, 2000, “
Advances in Dropwise Condensation Heat Transfer: Chinese Research
,”
Chem. Eng. J.
0300-9467,
78
(
2–3
), pp.
87
93
.
6.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
, 1966, “
A Theory of Heat Transfer by Dropwise Condensation
,”
Proceedings of the Third International Heat Transfer Conference
, Chicago, IL, Vol.
2
, pp.
362
375
.
7.
Tanaka
,
H.
, 1975, “
A Theoretical Study of Dropwise Condensation
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
72
98
.
8.
Wu
,
W. H.
, and
Maa
,
J. R.
, 1976, “
On the Heat Transfer in Dropwise Condensation
,”
Chem. Eng. J.
0300-9467,
12
(
3
), pp.
225
231
.
9.
Neumann
,
A. W.
,
Abdelmessih
,
A. H.
, and
Hameed
,
A.
, 1978, “
The Role of Contact Angles and Contact Angle Hysteresis in Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
21
(
7
), pp.
947
953
.
10.
Maa
,
J. R.
, 1978, “
Drop Size Distribution and Heat Flux of Dropwise Condensation
,”
Chem. Eng. J.
0300-9467,
16
(
3
), pp.
171
176
.
11.
Abu-Orabi
,
M.
, 1998, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
1
), pp.
81
87
.
12.
Das
,
A. K.
,
Kilty
,
H. P.
,
Marto
,
P. J.
,
Andeen
,
G. B.
, and
Kumar
,
A.
, 2000, “
The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
122
(
2
), pp.
278
286
.
13.
Vemuri
,
S.
, and
Kim
,
K. J.
, 2006, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
3–4
), pp.
649
657
.
14.
Vemuri
,
S.
,
Kim
,
K. J.
,
Wood
,
B. D.
,
Govindaraju
,
S.
, and
Bell
,
T. W.
, 2006, “
Long Term Testing for Dropwise Condensation Using Self-Assembled Monolayer Coatings of n-Octadecyl Mercaptan
,”
Appl. Therm. Eng.
1359-4311,
26
(
4
), pp.
421
429
.
15.
Tanasawa
,
I.
, 1991, “
Advances in Condensation Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
21
, pp.
55
139
.
16.
Fatica
,
N.
, and
Katz
,
D. L.
, 1949, “
Dropwise Condensation
,”
Chem. Eng. Prog.
0360-7275,
45
(
11
), pp.
661
674
.
17.
Randolph
,
A. D.
, 1988,
Theory of Particulate Processes
,
2nd ed.
,
Academic
,
New York
.
18.
Leach
,
R. N.
,
Stevens
,
F.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
, 2006, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
0743-7463,
22
(
21
), pp.
8864
8872
.
19.
Dimitrakopoulos
,
P.
, and
Higdon
,
J. J. L.
, 1999, “
On the Gravitational Displacement of Three-Dimensional Fluid Droplets From Inclined Solid Surfaces
,”
J. Fluid Mech.
0022-1120,
395
, pp.
181
209
.
20.
Kim
,
H. -Y.
,
Lee
,
H. J.
, and
Kang
,
B. H.
, 2002, “
Sliding of Liquid Drops Down and Inclined Solid Surface
,”
J. Colloid Interface Sci.
0021-9797,
247
, pp.
372
380
.
You do not currently have access to this content.