The determination of emissivity of layered structures is critical in many applications, such as radiation thermometry, microelectronics, radiative cooling, and energy harvesting. Two different approaches, i.e., the “indirect” and “direct” methods, are commonly used for computing the emissivity of an object. For an opaque surface at a uniform temperature, the indirect method involves calculating the spectral directional-hemispherical reflectance to deduce the spectral directional emissivity based on Kirchhoff’s law. On the other hand, a few studies have used a combination of Maxwell’s equations with the fluctuation-dissipation theorem to directly calculate the emissivity. The present study aims at unifying the direct and indirect methods for calculating the far-field thermal emission from layered structures with a nonuniform temperature distribution. Formulations for both methods are given to illustrate the equivalence between the indirect and the direct methods. Thermal emission from an asymmetric Fabry–Pérot resonance cavity with a nonuniform temperature distribution is taken as an example to show how to predict the intensity, emissivity, and the brightness temperature. The local density of states, however, can only be calculated using the direct method.

1.
Zhang
,
Z. M.
,
Tsai
,
B. K.
, and
Machin
,
G.
, eds., 2010,
Radiometric Temperature Measurements: I. Fundamentals
,
Elsevier
,
Amsterdam
.
2.
Zhang
,
Z. M.
,
Tsai
,
B. K.
, and
Machin
,
G.
, eds., 2010,
Radiometric Temperature Measurements: II. Applications
,
Elsevier
,
Amsterdam
.
3.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2004, “
Thermal Emission Control With One-Dimensional Metallodielectric Photonic Crystals
,”
Phys. Rev. B
0556-2805,
70
, p.
125101
.
4.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2005, “
Direct Computation of Thermal Emission From Nanostructures
,”
Annu. Rev. Heat Transfer
1049-0787,
14
, pp.
169
195
.
5.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2005, “
Thermal Radiation in 1D Photonic Crystals
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
175
183
.
6.
Tsang
,
L.
,
Njoku
,
E.
, and
Kong
,
J. A.
, 1975, “
Microwave Thermal Emission from a Stratified Medium With Nonuniform Temperature Distribution
,”
J. Appl. Phys.
0021-8979,
46
, pp.
5127
5133
.
7.
Luo
,
C. Y.
,
Narayanaswamy
,
A.
,
Chen
,
G.
, and
Joannopoulos
,
J. D.
, 2004, “
Thermal Radiation From Photonic Crystals: A Direct Calculation
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
213905
.
8.
Basu
,
S.
,
Zhang
,
Z. M.
, and
Fu
,
C. J.
, 2009, “
Review of Near-field Thermal Radiation and Its Application to Energy Conversion
,”
Int. J. Energy Res.
0363-907X,
33
, pp.
1203
1232
.
9.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
, 2008, “
Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
305
316
.
10.
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2006, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1703
1718
.
11.
Francoeur
,
M.
,
Mengüç
,
M. P.
, and
Vaillon
,
R.
, 2009, “
Solution of Near-field Thermal Radiation in One-Dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
110
, pp.
2002
2018
.
12.
Lee
,
B. J.
,
Park
,
K.
, and
Zhang
,
Z. M.
, 2007, “
Energy Pathways in Nanoscale Thermal Radiation
,”
Appl. Phys. Lett.
0003-6951,
91
, pp.
153101
.
13.
BASU
,
S.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
, 2011, “
Direct Calculation of Energy Streamlines in Near-Field Thermal Radiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073, in press.
14.
Zhang
,
Z. M.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
15.
Lee
,
B. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
, 2008, “
Coherent Thermal Emission by Excitation of Magnetic Polaritons Between Periodic Strips and a Metallic Film
,”
Opt. Express
1094-4087,
16
, pp.
11328
11336
.
16.
Wang
,
L. P.
,
Lee
,
B. J.
,
Wang
,
X. J.
, and
Zhang
,
Z. M.
, 2009, “
Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Perot Resonance Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3024
3031
.
17.
Chen
,
G.
, 1997, “
Wave Effects on Radiative Transfer in Absorbing and Emitting Thin-Film Media
,”
Microscale Thermophys. Eng.
1089-3954,
1
, pp.
215
224
.
18.
Baltes
,
H. P.
, 1976, “
On the Validity of Kirchhoff's Law of Heat Radiation for a Body in a Nonequilibrium Environment
,”
Progress in Optics
,
Elsevier
,
New York
.
19.
Rytov
,
S. M.
,
Kravtsov
,
Yu. A.
, and
Tatarskii
,
V. I.
, 1987,
Principles of Statistical Radiophysics
, Vol.
3
,
Springer-Verlag
,
New York
.
20.
Tsang
,
L.
,
Kong
,
J. A.
, and
Ding
,
K. H.
, 2000,
Scattering of Electromagnetic Waves: Theories and Applications
,
Wiley
,
New York
.
21.
Sipe
,
J. E.
, 1987, “
New Green-Function Formalism for Surface Optics
,”
J. Opt. Soc. Am. B
0740-3224,
4
, pp.
481
489
.
22.
Joulain
,
K.
,
Carminati
,
R.
,
Mulet
,
J. -P.
, and
Greffet
,
J. -J.
, 2003, “
Definition and Measurement of the Local Density of Electromagnetic States Close to an Interface
,”
Phys. Rev. B
0556-2805,
68
, pp.
245405
.
23.
Basu
,
S.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2010, “
Near-Field Radiation Calculated With an Improved Dielectric Function Model for Doped Silicon
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023302
.
24.
Bardati
,
F.
, and
Solimini
,
D.
, 1984, “
On the Emissivity of Layered Materials
,”
IEEE Trans. Geosci. Remote Sens.
0196-2892,
GE-22
, pp.
374
376
.
25.
Zhang
,
Z. M.
, and
Basu
,
S.
, 2007, “
Entropy Flow and Generation in Radiative Transfer Between Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
702
712
.
26.
E. D.
Palik
, ed., 1998,
Handbook of Optical Constants of Solids
,
Academic
,
San Diego, CA
.
27.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2006, “
Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics
,”
J. Appl. Phys.
0021-8979,
100
, p.
063529
.
28.
Park
,
K.
,
Lee
,
B. J.
,
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2005, “
Study of the Surface and Bulk Polaritons With a Negative Index Metamaterial
,”
J. Opt. Soc. Am. B
0740-3224,
22
, pp.
1016
1023
.
You do not currently have access to this content.