A two-dimensional numerical model is developed to study the effect of the turbulent Prandtl number Prt on momentum and energy transport in a highly variable property flow of supercritical fluids in a vertical round tube. Both regimes of enhanced and deteriorated heat transfer have been investigated. The equations of the Prt leading to the best agreement with the experiments in either regime of heat transfer were specified. The results of this study show that the increase in the Prt causes the heat transfer coefficients to decrease. When the buoyancy force increases, a better agreement with the experimental data is reached if values lower than 0.9 are used for the Prt. A decrease in the Prt values results in an increase in turbulent activities. From the effect that the Prt has on heat transfer coefficients, it may be deduced that the buoyancy effects in the upward flow of a supercritical fluid lead to the decrease in the Prt value and hence to the increase in the heat transfer coefficients. Furthermore, the value of the Prt in the laminar viscous sublayer as expected does not have a significant effect on heat transfer rate. The effect of the turbulence model on the extent to which the Prt influences the rate of heat transfer is also examined. The results obtained are shown to be valid regardless of the turbulence model used.

1.
Simões
,
P. C.
,
Afonso
,
B.
,
Fernandes
,
J.
, and
Mota
,
J. P. B.
, 2008, “
Static Mixers as Heat Exchangers in Supercritical Fluid Extraction Processes
,”
J. Supercrit. Fluids
0896-8446,
43
, pp.
477
483
.
2.
Nikitin
,
K.
,
Kato
,
Y.
, and
Ngo
,
L.
, 2006, “
Printed Circuit Heat Exchanger Thermal–Hydraulic Performance in Supercritical CO2 Experimental Loop
,”
Int. J. Refrig.
0140-7007,
29
, pp.
807
814
.
3.
van der Kraan
,
M.
,
Peeters
,
M. M. W.
,
Cid
,
M. V. F.
,
Woerlee
,
G. F.
,
Veugelers
,
W. J. T.
, and
Witkamp
,
G. J.
, 2005, “
The Influence of Variable Physical Properties and Buoyancy on Heat Exchanger Design for Near and Supercritical Conditions
,”
J. Supercrit. Fluids
0896-8446,
34
, pp.
99
105
.
4.
Hall
,
W. B.
, and
Jackson
,
J. D.
, 1969, “
Laminarization of a Turbulent Pipe Flow by Buoyancy Force
,”
ASME
Paper No. 69.
5.
Jackson
,
J. D.
, and
Hall
,
W. B.
, 1979, “
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Bundles
, Vol.
2
,
S.
Kakac
and
D. B.
Spalding
, eds.,
Hemisphere
,
New York
, pp.
613
640
.
6.
Renz
,
U.
, and
Bellinghausen
,
R.
, 1986, “
Heat Transfer in a Vertical Pipe at Supercritical Pressure
,”
Eighth International Heat Transfer Conference
, Vol.
3
, pp.
957
962
.
7.
Sharabi
,
M.
,
Ambrosini
,
W.
,
He
,
S.
, and
Jackson
,
J. D.
, 2008, “
Prediction of Turbulent Convective Heat Transfer to a Fluid at Supercritical Pressure in Square and Triangular Channels
,”
Ann. Nucl. Energy
0306-4549,
35
, pp.
993
1005
.
8.
Bazargan
,
M.
,
Fraser
,
D.
, and
Chatoorgan
,
V.
, 2005, “
Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in a Horizontal Round Tube
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
897
902
.
9.
Bazargan
,
M.
, and
Fraser
,
D.
, 2009, “
Heat Transfer to Supercritical Water in a Horizontal Pipe: Modeling, New Empirical Correlation, and Comparison Against Experimental Data
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
061702
.
10.
Licht
,
J.
,
Anderson
,
M.
, and
Corradini
,
M.
, 2009, “
Heat Transfer and Fluid Flow Characteristics in Supercritical Pressure Water
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
072502
.
11.
He
,
S.
,
Kim
,
W. S.
, and
Bae
,
J. H.
, 2008, “
Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4659
4675
.
12.
Cheng
,
X.
,
Kuang
,
B.
, and
Yang
,
Y. H.
, 2007, “
Numerical Analysis of Heat Transfer in Supercritical Water Cooled Flow Channels
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
240
252
.
13.
Yang
,
J.
,
Oka
,
Y.
,
Ishiwatari
,
Y.
,
Liu
,
J.
, and
Jewoon
,
Y.
, 2007, “
Numerical Investigation of Heat Transfer in Upward Flows of Supercritical Water in Circular Tubes and Tight Fuel Rod Bundles
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
420
430
.
14.
He
,
S.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
, 2008, “
A Computational Study of Convective Heat Transfer to Carbon Dioxide at a Pressure Just Above the Critical Value
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
1662
1675
.
15.
Jiang
,
P. -X.
,
Zhang
,
Y.
, and
Shi
,
R. -F.
, 2008, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini-Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3052
3056
.
16.
Jiang
,
P. -X.
,
Zhang
,
Y.
,
Xu
,
Y. -J.
, and
Shi
,
R. -F.
, 2008, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
998
1011
.
17.
He
,
S.
,
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Shi
,
R. F.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
, 2005, “
A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
521
530
.
18.
He
,
S.
,
Kim
,
W. S.
,
Jiang
,
P. -X.
, and
Jackson
,
J. D.
, 2004, “
Simulation of Mixed Convection Heat Transfer to Carbon Dioxide at Supercritical Pressure
,”
J. Mech. Eng. Sci.
0022-2542,
218
, pp.
1281
1296
.
19.
Howell
,
J. R.
, and
Lee
,
S. H.
, 1999, “
Convective Heat Transfer in the Entrance Region of a Vertical Tube for Water Near the Thermodynamic Critical Point
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1177
1187
.
20.
Lee
,
S. H.
, and
Howell
,
J. R.
, 1998, “
Turbulent Developing Convective Heat Transfer in a Tube for Fluids Near the Critical Point
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1205
1218
.
21.
Dang
,
C.
, and
Hihara
,
E.
, 2004, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide: Part 2, Comparison of Numerical Calculation With Different Turbulence Models
,”
Int. J. Refrig.
0140-7007,
27
, pp.
748
760
.
22.
Antonia
,
R. A.
, and
Kim
,
J.
, 1991, “
Turbulent Prandtl Number in the Near-Wall Region of a Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1905
1908
.
23.
McEligot
,
D. M.
, and
Taylor
,
M. F.
, 1996, “
The Turbulent Prandtl Number in the Near-Wall Region for Low-Prandtl-Number Gas Mixtures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
1287
1295
.
24.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
25.
Kim
,
W. S.
,
He
,
S.
, and
Jackson
,
J. D.
, 2008, “
Assessment by Comparison With DNS Data of Turbulence Models Used in Simulations of Mixed Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1293
1312
.
26.
Mohseni
,
M.
, and
Bazargan
,
M.
, 2010, “
The Effect of the Low Reynolds Number k-ε Turbulence Models on Simulation of the Enhanced and Deteriorated Convective Heat Transfer to the Supercritical Fluid Flows
,”
Heat Mass Transfer
0947-7411, doi: 10.1007/s00231-010-0753-9.
27.
Myong
,
H. K.
, and
Kasagi
,
N.
, 1990, “
A New Approach to the Improvement of k-ε Turbulence Model for Wall Bounded Shear Flows
,”
JSME Int. J.
0913-185X,
33
, pp.
63
72
.
28.
Myong
,
H. K.
,
Kasagi
,
N.
, and
Hirata
,
M.
, 1989, “
Numerical Prediction of Turbulent Pipe Flow Heat Transfer for Various Prandtl Number Fluids With the Improved k-ε Turbulence Model
,”
JSME Int. J., Ser. II
0914-8817,
32
, pp.
613
622
.
29.
Hollingsworth
,
D. K.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1989, “
Measurement and Prediction of the Turbulent Thermal Boundary Layer in Water on Flat and Concave Surface
,” Thermosciences Division, Department of Mechanical Engineering, Stanford University, Report No. HMT-41.
30.
Kays
,
W. M.
, 1994, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
284
295
.
31.
Bae
,
Y. Y.
, and
Kim
,
H. Y.
, 2009, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
, pp.
329
339
.
32.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
, 2008, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
0896-8446,
44
, pp.
164
171
.
33.
Bae
,
Y. -Y.
,
Kim
,
H. -Y.
, and
Kang
,
D. -J.
, 2010, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
0894-1777,
34
, pp.
1295
1308
.
34.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
, 1972, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
2575
2593
.
35.
Lemmon
,
E. W.
,
Peskin
,
A. P.
,
LcLinden
,
M. O.
, and
Friend
,
D. G.
, 2003, “
NIST 12: Thermodynamic and Transport Properties of Pure Fluids
,” NIST Standard Reference Database Number 12, Version 5.1, National Institute of Standards and Technology, U.S.A.
36.
Patankar
,
S. V.
, 1978,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
37.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamic: The Finite Volume Method
,
Longman Group Ltd.
,
England
.
38.
FLUENT Inc.
, 2005, FLUENT 6.2 user’s manual.
39.
Hsu
,
Y. Y.
, and
Smith
,
J. M.
, 1961, “
The Effect of Density Variation on Heat Transfer in the Critical Region
,”
ASME J. Heat Transfer
0022-1481,
82
, pp.
176
182
.
40.
Shiralkar
,
B. S.
, and
Griffith
,
P.
, 1970, “
The Effect of Swirl, Inlet Condition, Flow Direction and Tube Diameter on Heat Transfer to Fluids at Supercritical Pressure
,”
ASME J. Heat Transfer
0022-1481,
92
, pp.
465
474
.
41.
Bazargan
,
M.
, and
Mohseni
,
M.
, 2009, “
The Significance of the Buffer Zone of Boundary Layer on Convective Heat Transfer to a Vertical Turbulent Flow of a Supercritical Fluid
,”
J. Supercrit. Fluids
0896-8446,
51
, pp.
221
229
.
42.
McEligot
,
D. M.
,
Coon
,
C. W.
, and
Perkins
,
H. C.
, 1970, “
Relaminarization in Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
431
433
.
43.
Sharabi
,
M.
, and
Ambrosini
,
W.
, 2009, “
Discussion of Heat Transfer Phenomena in Fluids at Supercritical Pressure With the Aid of CFD Models
,”
Ann. Nucl. Energy
0306-4549,
36
, pp.
60
71
.
44.
Oosthuizen
,
P. H.
, and
Naylor
,
D.
, 1999,
An Introduction to Convective Heat Transfer Analysis
,
Int. ed.
,
McGraw-Hill
,
New York
.
45.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 1994, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
139
151
.
You do not currently have access to this content.