A solution to the problem of transient one-dimensional heat conduction in a finite domain is developed through the use of parametric fractional derivatives. The heat diffusion equation is rewritten as anomalous diffusion, and both analytical and numerical solutions for the evolution of the dimensionless temperature profile are obtained. For large slab thicknesses, the results using fractional order derivatives match the semi-infinite domain solution for Fourier numbers, Fo[0,1/16]. For thinner slabs, the fractional order solution matches the results obtained using the integral transform method and Green’s function solution for finite domains. A correlation is obtained to display the variation of the fractional order p as a function of dimensionless time (Fo) and slab thickness (ζ) at the boundary ζ=0.

1.
Crank
,
J.
, 1976,
The Mathematics of Diffusion
,
2nd ed.
,
Clarendon
,
Oxford
.
2.
Barrer
,
R. M.
, 1941,
Diffusion In and Through Solids
,
Cambridge University Press
,
London
.
3.
Jost
,
W.
, 1952,
Diffusion in Solids, Liquids, Gases
,
Academic
,
New York
.
4.
Babbitt
,
J. D.
, 1950, “
On the Differential Equations of Diffusion
,”
Can J. Res.
,
28
(
A
), pp.
449
474
.
5.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon
,
Oxford
.
6.
Morse
,
P.
, and
Feshbach
,
H.
, 1953,
Methods of Theoretical Physics
, Vols.
I and II
,
McGraw-Hill
,
New York
.
7.
Beck
,
J. V.
,
Cole
,
K. D.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
, 1992,
Heat Conduction Using Green’s Functions
,
Hemisphere
,
New York
.
8.
Tuck
,
B.
, 1976, “
Some Explicit Solutions to the Non-Linear Diffusion Equation
,”
J. Phys. D: Appl. Phys.
0022-3727,
9
(
11
), pp.
1559
1569
.
9.
Shober
,
R. A.
, 1977, “
Nonlinear Methods for Solving the Diffusion Equation
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Parlange
,
J. -Y.
,
Hogarth
,
W. L.
,
Parlange
,
M. B.
,
Haverkamp
,
R.
,
Barry
,
D. A.
,
Ross
,
P. J.
, and
Steenhuis
,
T. S.
, 1998, “
Approximate Analytical Solution of the Nonlinear Diffusion Equation for Arbitrary Boundary Conditions
,”
Transp. Porous Media
0169-3913,
30
(
1
), pp.
45
55
.
11.
Nishida
,
T.
, 1978, “
Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics
,”
Publ. Math. (Debrecen)
0033-3883,
78
(
02
), pp.
46
53
.
12.
Vlad
,
M. O.
, and
Ross
,
J.
, 2002, “
Systematic Derivation of Reaction-Diffusion Equations With Distributed Delays and Relations to Fractional Reaction-Diffusion Equations and Hyperbolic Transport Equations: Application to the Theory of Neolithic Transition
,”
Phys. Rev. E
1063-651X,
66
(
6
), p.
061908
.
13.
Berger
,
M. J.
, and
Oliger
,
J.
, 1984, “
Adaptative Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
0021-9991,
53
, pp.
484
512
.
14.
Monteiro
,
E. R.
,
Macedo
,
E. N.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
, 2009, “
Integral Transform Solution for Hyperbolic Heat Conduction in a Finite Slab
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
(
4
), pp.
297
303
.
15.
Ozisik
,
M. N.
, 1980,
Heat Conduction
,
Wiley
,
New York
.
16.
Beck
,
J. V.
, 1984, “
Green’s Function Solution for Transient Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
8
), pp.
1235
1244
.
17.
Greenberg
,
M. D.
, 1998,
Advanced Engineering Mathematics
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Davies
,
B.
, 1985,
Integral Transforms and Their Applications
,
2nd ed.
,
Springer
,
Berlin
.
19.
Debnath
,
L.
, and
Bhatta
,
D.
, 2007,
Integral Transforms and Their Applications
,
2nd ed.
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
20.
Ozisik
,
M. N.
, 1968,
Boundary Value Problems of Heat Conduction
,
International Textbook Company
,
Scranton, PA
, p.
18515
.
21.
Cotta
,
R. M.
, 1993,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC
,
Boca Raton, FL
.
22.
Oldham
,
K. B.
, and
Spanier
,
J.
, 2002,
The Fractional Calculus
,
Dover
,
New York
.
23.
Ölçer
,
N. Y.
, 1964, “
On the Theory of Conductive Heat Transfer Infinite Regions
,”
Int. J. Heat Mass Transfer
0017-9310,
7
, pp.
307
314
.
24.
Cotta
,
R. M.
, 1994, “
Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
381
393
.
25.
Ölçer
,
N. Y.
, 1965, “
On the Theory of Conductive Heat Transfer in Finite Regions With Boundary Conditions of Second Kind
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, pp.
529
556
.
26.
Serfaty
,
R.
, and
Cotta
,
R. M.
, 1990, “
Integral Transform Solutions of Diffusion Problems With Nonlinear Equation Coefficients
,”
Int. Commun. Heat Mass Transfer
0735-1933,
17
, pp.
851
864
.
27.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
, 1993, “
Integral Transform Method
,”
Appl. Math. Model.
0307-904X,
17
, pp.
157
161
.
28.
Cotta
,
R. M.
,
Ungs
,
M. J.
, and
Mikhailov
,
M. D.
, 2003, “
Contaminant Transport in Finite Fractured Porous Medium: Integral Transforms and Lumped-Differential Formulations
,”
Ann. Nucl. Energy
0306-4549,
30
(
3
), pp.
261
285
.
29.
Naveira
,
C. P.
,
Lachi
,
M.
,
Cotta
,
R. M.
, and
Padet
,
J.
, 2007, “
Integral Transform Solution of Transient Forced Convection in External Flow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
34
(
6
), pp.
703
712
.
30.
de Lima
,
G. G. C.
,
Santos
,
C. A. C.
,
Haag
,
A.
, and
Cotta
,
R. M.
, 2007, “
Integral Transform Solution of Internal Flow Problems Based on Navier–Stokes Equations and Primitive Variables Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
(
3
), pp.
544
561
.
31.
Neto
,
H. L.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
, 2006, “
Integral Transform Solution for Natural Convection in Three-Dimensional Porous Cavities: Aspect Ratio Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
23–24
), pp.
4687
4695
.
32.
de Barros
,
F. P. J.
,
Mills
,
W. B.
, and
Cotta
,
R. M.
, 2006, “
Integral Transform Solution of a Two-Dimensional Model for Contaminant Dispersion in Rivers and Channels With Spatially Variable Coefficients
,”
Environ. Modell. Software
1364-8152,
21
(
5
), pp.
699
709
.
33.
Leibniz
,
G. W.
, 1849, “
Letter from Hanover, Germany, September 30, 1695, to G. A. L’Hospital
,”
Leibnizen Mathematische Schriften
,
2
, pp.
301
302
.
34.
Coimbra
,
C. F. M.
, 2003, “
Mechanics With Variable Order Differential Operators
,”
Ann. Phys.
0003-3804,
12
(
11–12
), pp.
692
703
.
35.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
36.
Loverro
,
A.
, 2004,
Fractional Calculus: History, Definitions and Applications for the Engineer
,
University of Notre Dame
,
USA
, pp.
3659
3661
.
37.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
, 2006,
Theory and Applications of Fractional Differential Equations
,
1st ed.
,
Elsevier
,
Amsterdam, Netherlands
.
38.
Soon
,
C. M.
,
Coimbra
,
C. F. M.
, and
Kobayashi
,
M. H.
, 2005, “
The Variable Viscoelasticity Oscillator
,”
Ann. Phys.
0003-3804,
14
(
6
), pp.
378
389
.
39.
Ramirez
,
L. E. S.
, and
Coimbra
,
C. F. M.
, 2007, “
A Variable Order Constitutive Relation for Viscoelasticity
,”
Ann. Phys.
0003-3804,
16
(
7–8
), pp.
543
552
.
40.
Coimbra
,
C. F. M.
,
Edwards
,
D. K.
, and
Rangel
,
R. H.
, 1998, “
Heat Transfer in a Homogeneous Suspension Including Radiation and History Effects
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
304
312
.
41.
Coimbra
,
C. F. M.
, and
Kobayashi
,
M. H.
, 2002, “
On the Viscous Motion of a Small Particle in a Rotating Cylinder
,”
J. Fluid Mech.
0022-1120,
469
, pp.
257
286
.
42.
Coimbra
,
C. F. M.
,
L’Esperance
,
D.
,
Lambert
,
R. A.
,
Trolinger
,
J. D.
, and
Rangel
,
R. H.
, 1999, “
An Experimental Study on Stationary History Effects in High Frequency Stokes Flows
,”
J. Fluid Mech.
0022-1120,
504
, pp.
353
363
.
43.
Lim
,
E. A.
,
Coimbra
,
C. F. M.
, and
Kobayashi
,
M. H.
, 2005, “
Dynamics of a Suspended Particle in Eccentrically Rotating Flows
,”
J. Fluid Mech.
0022-1120,
535
, pp.
101
110
.
44.
Kobayashi
,
M. H.
, and
Coimbra
,
C. F. M.
, 2005, “
On the Stability of the Maxey-Riley Equation in Nonuniform Linear Flows
,”
Phys. Fluids
1070-6631,
17
, p.
113301
.
45.
Kulish
,
V. V.
, and
Lage
,
J. L.
, 2002, “
Application of Fractional Calculus to Fluid Mechanics
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
803
806
.
46.
Momani
,
S.
, and
Odibat
,
Z.
, 2006, “
Analytical Approach to Linear Fractional Partial Differential Equations Arising in Fluid Mechanics
,”
Phys. Lett. A
0375-9601,
355
, pp.
271
279
.
47.
Aoki
,
Y.
,
Sen
,
M.
, and
Paolucci
,
S.
, 2007, “
Approximation of Transient Temperatures in Complex Geometries Using Fractional Derivatives
,”
Heat Mass Transfer
,
Springer-Verlag
,
Berlin
.
48.
Coimbra
,
C. F. M.
, and
Rangel
,
R. H.
, 2000, “
Unsteady Heat Transfer in the Harmonic Heating of a Dilute Suspension of Small Particles
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3305
3316
.
49.
Kholpanov
,
L. P.
, and
Zakiev
,
S. E.
, 2005, “
Fractional Integro-Differential Analysis of Heat and Mass Transfer
,”
J. Eng. Phys. Thermophys.
1062-0125,
78
(
1
), pp.
33
46
.
50.
Mills
,
A. F.
, 1999,
Basic Heat and Mass Transfer
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
51.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
3rd ed.
,
Wiley
,
New York
.
52.
Diaz
,
G.
, and
Coimbra
,
C. F. M.
, 2009, “
Nonlinear Dynamics and Control of a Variable Order Oscillator With Application to the van del Pol Equation
,”
Nonlinear Dyn.
0924-090X,
56
(
1–2
), pp.
145
157
.
You do not currently have access to this content.