Lattice Boltzmann method (LBM) is employed to investigate natural convection inside porous medium enclosures at high Rayleigh numbers. Volume averaged porous medium model is coupled with the lattice Boltzmann formulation of the momentum and energy equations for fluid flow. A parallel implementation of the single relaxation time LBM is used, which allows the porous medium modified Rayleigh number Ram to be as high as 108. Heat transfer results in the form of the enclosure averaged Nusselt number Nu are obtained for higher modified Rayleigh numbers 104Ram108. The Nu values are compared with values in the absence of the form drag term. The form drag due to the porous medium is found to influence Nu considerably. The effect of the form drag on Nu is studied by using a form drag modified Rayleigh number RaC (extended from Ram). Utilizing the results for Nu in the high Ram range, a correlation is proposed between Nu and RaC for Darcy numbers 106Da102, encompassing the non-Darcy flow regime.

1.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
3rd ed.
,
Springer
,
New York
.
2.
Cheng
,
P.
, 1978, “
Heat Transfer in Geothermal Systems
,”
Adv. Heat Transfer
0065-2717,
14
, pp.
1
105
.
3.
Oosthuizen
,
P. H.
, 2000, “
Natural Convective Heat Transfer in Porous-Media-Filled Enclosures
,”
Handbook of Porous Media
, Vol.
1
,
Taylor and Francis
,
New York
, pp.
489
520
.
4.
Weber
,
J. E.
, 1975, “
The Boundary-Layer Regime for Convection in a Vertical Porous Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
18
(
4
), pp.
569
573
.
5.
Klarsfeld
,
S. M.
, 1970, “
Champs de temperature associés aux mouvements de convection naturelle dans un milieu poreaux limit
,”
Rev. Gen. Therm.
0035-3159,
9
, pp.
1403
1423
.
6.
Bejan
,
A.
, 1979, “
On the Boundary Layer Regime in a Vertical Enclosure Filled With a Porous Medium
,”
Lett. Heat Mass Transfer
0094-4548,
6
(
2
), pp.
93
102
.
7.
Lauriat
,
G.
, and
Prasad
,
V.
, 1989, “
Non-Darcian Effects on Natural Convection in a Vertical Porous Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
11
), pp.
2135
2148
.
8.
Saeid
,
N. H.
, and
Pop
,
I.
, 2005, “
Non-Darcy Natural Convection in a Square Cavity Filled With a Porous Medium
,”
Fluid Dyn. Res.
0169-5983,
36
(
1
), pp.
35
43
.
9.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
(
1
), pp.
329
364
.
10.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University Press
,
New York
.
11.
Shan
,
X.
, and
Chen
,
H.
, 1993, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
1063-651X,
47
(
3
), pp.
1815
1819
.
12.
Chen
,
S.
,
Dawson
,
S. P.
,
Doolen
,
G. D.
,
Janecky
,
D. R.
, and
Lawniczak
,
A.
, 1995, “
Lattice Methods and Their Applications to Reacting Systems
,”
Comput. Chem. Eng.
0098-1354,
19
(
6–7
), pp.
617
646
.
13.
Alexander
,
F. J.
,
Chen
,
H.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1992, “
Lattice Boltzmann Model for Compressible Fluids
,”
Phys. Rev. A
1050-2947,
46
(
4
), pp.
1967
1970
.
14.
Guo
,
Z.
, and
Zhao
,
T. S.
, 2002, “
Lattice Boltzmann Model for Incompressible Flows Through Porous Media
,”
Phys. Rev. E
1063-651X,
66
(
3
), p.
036304
.
15.
He
,
X.
, and
Luo
,
L. -S.
, 1997, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
56
(
6
), pp.
6811
6817
.
16.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
0021-9991,
146
(
1
), pp.
282
300
.
17.
Palmer
,
B. J.
, and
Rector
,
D. R.
, 2000, “
Lattice Boltzmann Algorithm for Simulating Thermal Flow in Compressible Fluids
,”
J. Comput. Phys.
0021-9991,
161
, pp.
1
20
.
18.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y.
, 2003, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
1063-651X,
68
(
2
), p.
026701
.
19.
Dixit
,
H. N.
, and
Babu
,
V.
, 2006, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
3–4
), pp.
727
739
.
20.
Shi
,
Y.
,
Zhao
,
T. S.
, and
Guo
,
Z. L.
, 2004, “
Thermal Lattice Bhatnagar-Gross-Krook Model for Flows With Viscous Heat Dissipation in the Incompressible Limit
,”
Phys. Rev. E
1063-651X,
70
, p.
066310
.
21.
Guo
,
Z.
, and
Zhao
,
T. S.
, 2005, “
A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Numer. Heat Transfer, Part B
1040-7790,
47
(
2
), pp.
157
177
.
22.
Guo
,
Z.
,
Zheng
,
C.
,
Shi
,
B.
, and
Zhao
,
T. S.
, 2007, “
Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model
,”
Phys. Rev. E
1063-651X,
75
(
3
), p.
036704
.
23.
Seta
,
T.
,
Takegoshi
,
E.
, and
Okui
,
K.
, 2006, “
Lattice Boltzmann Simulation of Natural Convection in Porous Media
,”
Math. Comput. Simul.
0378-4754,
72
(
2–6
), pp.
195
200
.
24.
Pan
,
C.
,
Luo
,
L. -S.
, and
Miller
,
C. T.
, 2006, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
0045-7930,
35
(
8–9
), pp.
898
909
.
25.
Hsu
,
C. T.
, and
Cheng
,
P.
, 1990, “
Thermal Dispersion in a Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
8
), pp.
1587
1597
.
26.
Ergun
,
S.
, 1952, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
0360-7275,
48
(
2
), pp.
89
94
.
27.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
, 2002, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
65
(
4
), p.
046308
.
28.
Inamuro
,
T.
,
Yoshino
,
M.
, and
Ogino
,
F.
, 1995, “
A Non-Slip Boundary Condition for Lattice Boltzmann Simulations
,”
Phys. Fluids
1070-6631,
7
(
12
), pp.
2928
2930
.
29.
He
,
X.
,
Luo
,
L. -S.
, and
Dembo
,
M.
, 1996, “
Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids
,”
J. Comput. Phys.
0021-9991,
129
(
2
), pp.
357
363
.
30.
Sunder
,
C. S.
,
Baskar
,
G.
,
Babu
,
V.
, and
Strenski
,
D.
, 2006, “
A Detailed Performance Analysis of the Interpolation Supplemented Lattice Boltzmann Method on the Cray T3E and Cray X1A Detailed Performance Analysis of the Interpolation Supplemented Lattice Boltzmann Method on the Cray T3E and Cray X1
,”
Int. J. High Perform. Comput. Appl.
1094-3420,
20
(
4
), pp.
557
570
.
31.
Nithiarasu
,
P.
,
Seetharamu
,
K. N.
, and
Sundararajan
,
T.
, 1997, “
Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
16
), pp.
3955
3967
.
32.
Le Quéré
,
P.
, 1991, “
Accurate Solutions to the Square Thermally Driven Cavity at High Rayleigh Number
,”
Comput. Fluids
0045-7930,
20
(
1
), pp.
29
41
.
33.
de Vahl Davis
,
G.
, 1968, “
Laminar Natural Convection in an Enclosed Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
11
(
11
), pp.
1675
1693
.
34.
Walker
,
K.
, and
Homsy
,
G.
, 1978, “
Convection in a Porous Cavity
,”
J. Fluid Mech.
0022-1120,
87
(
03
), pp.
449
474
.
35.
Baytas
,
A. C.
, and
Pop
,
I.
, 1999, “
Free Convection in Oblique Enclosures Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
6
), pp.
1047
1057
.
36.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
, 2005, “
Heat Transfer in Enclosures Having a Fixed Amount of Solid Material Simulated With Heterogeneous and Homogeneous Models
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
23–24
), pp.
4748
4765
.
You do not currently have access to this content.