A numerical and experimental investigation is undertaken for developing laminar flow in a duct with one opaque, uniformly heated wall and one transparent wall. In the numerical model, mixed convection, radiative exchange, as well as two-dimensional conduction in the substrate are considered. Experiments are conducted in a high-aspect-ratio rectangular channel using infrared thermography to validate the numerical model and visualize the temperature field on a heated surface. An extended parametric study using the validated model is also carried out to assess the impact of channel height, and thermal conductivity and thickness of the substrate. For a channel height of H=6mm and a heating power of qs=257W/m2, as Re increases from 150 to 940 the fraction of heat transfer by convection from the heated surface rises from 65% to 79%. At Re=150, as H increases from 6 mm to 25 mm, radiation from the heated surface increases from 35% to 70% of the total heating power. The influence of substrate conductivity and thickness on local flux distributions is limited to regions near the channel inlet and outlet. Over the entire parametric space considered, radiation loss from the interior duct surfaces to the inlet and outlet apertures is less than 2% of the total heat input and thus unimportant.

1.
Siegel
,
R.
, and
Howell
,
J.
, 2002,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
,
New York
.
2.
Behnia
,
M.
,
Reizes
,
J. A.
, and
de Vahl Davis
,
G.
, 1990, “
Combined Radiation and Natural Convection in a Rectangular Cavity With a Transparent Wall and Containing a Non-Participating Fluid
,”
Int. J. Numer. Methods Fluids
0271-2091,
10
, pp.
305
325
.
3.
Kwon
,
S. S.
,
Kwon
,
Y. I.
, and
Park
,
J. L.
, 1993, “
Numerical Study of Combined Natural Convection and Radiation in a Rectangular Enclosure With a Transparent Window on the Center Region of Right Wall
,”
Sixth International Symposium on Transport Phenomena in Thermal Engineering
, pp.
215
220
.
4.
Siegel
,
R.
, 1973, “
Net Radiation Method for Enclosure Systems Involving Partially Transparent Walls
,”
NASA
, Report No. TN D-7384.
5.
Xamán
,
J.
,
Arce
,
J.
,
Álvarez
,
G.
, and
Chávez
,
Y.
, 2008, “
Laminar and Turbulent Natural Convection Combined With Surface Radiation in a Square Cavity With a Glass Wall
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
1630
1638
.
6.
Aronov
,
B.
, and
Zvirin
,
Y.
, 1999, “
A Novel Algorithm to Investigate Conjugate Heat Transfer in Transparent Insulation: Application to Solar Collectors
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
757
777
.
7.
Tchinda
,
R.
, 2009, “
A Review of the Mathematical Models for Predicting Solar Air Heater Systems
,”
Renewable Sustainable Energy Rev.
1364-0321,
13
, pp.
1734
1759
.
8.
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1980, “
Convective-Radiative Interaction in a Parallel Plate Channel—Application to Air-Operated Solar Collectors
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
1137
1146
.
9.
Sugavanam
,
R.
,
Ortega
,
A.
, and
Choi
,
C. Y.
, 1995, “
A Numerical Investigation of Conjugate Heat Transfer From a Flush Heat Source on a Conductive Board in Laminar Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2969
2984
.
10.
Chiu
,
W. K. S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
, 2001, “
Experimental and Numerical Study of Conjugate Heat Transfer in a Horizontal Channel Heated From Below
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
688
697
.
11.
Premachandran
,
B.
, and
Balaji
,
C.
, 2006, “
Conjugate Mixed Convection With Surface Radiation From a Horizontal Channel With Protruding Heat Sources
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3568
3582
.
12.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
13.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
14.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1996,
Numerical Recipes in Fortran
,
2nd ed.
,
Cambridge University
,
New York
.
15.
de Vahl Davis
,
G.
, 1983, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
, pp.
249
264
.
16.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
, 2002, “
Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
1158
1168
.
17.
Brassard
,
D.
, and
Ferchichi
,
M.
, 2005, “
Transformation of a Polynomial for a Contraction Wall Profile
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
183
185
.
18.
González-Mendizabal
,
D.
,
Bortot
,
P.
, and
López de Ramos
,
A. L.
, 1998, “
A Thermal Conductivity Experimental Method Based on Peltier Effect
,”
Int. J. Thermophys.
0195-928X,
19
, pp.
1229
1238
.
19.
Fujikura
,
Y.
,
Suzuki
,
T.
, and
Matsumoto
,
M.
, 1982, “
Emissivity of Chlorinated Polyethylene
,”
J. Appl. Polym. Sci.
0021-8995,
27
, pp.
1293
1300
.
20.
Il’yasov
,
S. G.
, and
Krasnikov
,
V. V.
, 1973, “
Indirect Methods for Determining Optical Characteristics of Radiation Scattering Materials
,”
J. Eng. Phys.
0022-0841,
19
(
5
), pp.
1424
1428
.
21.
Tsilingiris
,
P. T.
, 2003, “
Comparative Evaluation of the Infrared Transmission of Polymer Films
,”
Energy Convers. Manage.
0196-8904,
44
, pp.
2839
2856
.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
23.
Yang
,
W. -J.
, 2001,
Handbook of Flow Visualization
,
2nd ed.
,
Taylor & Francis
,
New York
.
24.
Bougeard
,
D.
, 2007, “
Infrared Thermography Investigation of Local Heat Transfer in a Plate Fin and Two-Tube Rows Assembly
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
988
1002
.
25.
Mori
,
M.
,
Novak
,
L.
, and
Sekavčnik
,
M.
, 2007, “
Measurements on Rotating Blades Using IR Thermography
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
, pp.
387
396
.
26.
Bujard
,
P.
,
Kühnlein
,
G.
,
Ino
,
S.
, and
Shiobara
,
T.
, 1994, “
Thermal Conductivity of Molding Compounds for Plastic Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
17
, pp.
527
532
.
You do not currently have access to this content.