To reduce particulate matters including soot, a diesel particulate filter (DPF) has been developed for the after-treatment of exhaust gas. Since the filter is plugged with particles that would cause an increase of filter back-pressure, filter regeneration process is needed. However, there is not enough data on the phenomena in DPF because there are many difficulties in measurements. In this study, the flow in DPF is simulated by the lattice Boltzmann method. To focus on a real filter, the inner structure of the filter is scanned by a 3D X-ray computed tomography technique. By conducting tomography-assisted simulation, the local velocity and pressure distributions in the filter can be visualized, which is hardly obtained by measurements. Results show that, even in cold flow, the complex flow pattern is observed due to the nonuniformity of pore structure inside the filter. Based on the flow characteristics in the range of 0.2–20 m/s, simulation results show a good agreement with the empirical equation of Ergun equation. In the combustion simulation, the time-dependent temperature field inside the filter is visualized. As the temperature of inflow gas is increased, the filter regeneration process is promoted.

1.
Searles
,
R. A.
,
Bosteels
,
D.
,
Such
,
C. H.
,
Nicol
,
A. J.
,
Andersson
,
J. D.
, and
Jemma
,
C. A.
, 2002, “
Investigation of the Feasibility of Achieving Euro V Heavy-Duty Emissions Limits With Advanced Emission Control Systems
,”
FISITA 2002 World Congress
, pp.
1
17
, Paper No. F02E310.
2.
Stamatelos
,
A. M.
, 1997, “
A Review of the Effect of Particulate Traps on the Efficiency of Vehicle Diesel Engines
,”
Energy Convers. Manage.
0196-8904,
38
(
1
), pp.
83
99
.
3.
Cooper
,
B. J.
,
Jung
,
H. J.
, and
Toss
,
J. E.
, 1990,
Treatment of Diesel Exhaust Gases
, U.S. Patent No. 4,902,487.
4.
Hawker
,
P.
, 1995, “
Diesel Emission Control Technology
,”
Platinum Met. Rev.
0032-1400,
39
, pp.
2
8
.
5.
Arrighetti
,
C.
,
Cordiner
,
S.
, and
Mulone
,
V.
, 2007, “
Heat and Mass Transfer Evaluation in the Channels of an Automotive Catalytic Converter by Detailed Fluid-Dynamic and Chemical Simulation
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
536
547
.
6.
Renksizbulut
,
M.
, and
Niazmand
,
H.
, 2006, “
Laminar Flow and Heat Transfer in the Entrance Region of Trapezoidal Channels With Constant Wall Temperature
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
63
74
.
7.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
8.
He
,
X.
, and
Doolen
,
G. D.
, 1997, “
Lattice Boltzmann Method on a Curvilinear Coordinate System: Vortex Shedding Behind a Circular Cylinder
,”
Phys. Rev. E
1063-651X,
56
, pp.
434
440
.
9.
Yamamoto
,
K.
,
He
,
X.
, and
Doolen
,
G. D.
, 2002, “
Simulation of Combustion Field With Lattice Boltzmann Method
,”
J. Stat. Phys.
0022-4715,
107
(
1/2
), pp.
367
383
.
10.
Filippova
,
O.
, and
Haenel
,
D.
, 2000, “
A Novel Numerical Scheme for Reactive Flows at Low Mach Numbers
,”
Comput. Phys. Commun.
0010-4655,
129
, pp.
267
274
.
11.
Yamamoto
,
K.
, 2003, “
LB Simulation on Combustion With Turbulence
,”
Int. J. Mod. Phys. B
0217-9792,
17
(
1–2
), pp.
197
200
.
12.
Yamamoto
,
K.
,
He
,
X.
, and
Doolen
,
G. D.
, 2004, “
Combustion Simulation Using the Lattice Boltzmann Method
,”
JSME Int. J., Ser. B
1340-8054,
47
(
2
), pp.
403
409
.
13.
Yamamoto
,
K.
, and
Ochi
,
F.
, 2006, “
Soot Accumulation and Combustion in Porous Media
,”
J. Energy Inst.
1743-9671,
79
, pp.
195
199
.
14.
Yamamoto
,
K.
, and
Takada
,
N.
, 2006, “
LB Simulation on Soot Combustion in Porous Media
,”
Physica A
0378-4371,
362
, pp.
111
117
.
15.
He
,
X.
, and
Luo
,
L. -S.
, 1997, “
Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation
,”
J. Stat. Phys.
0022-4715,
88
(
3/4
), pp.
927
944
.
16.
Petrasch
,
J.
,
Schrader
,
B.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2008, “
Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
032602
.
17.
Haussener
,
S.
,
Coray
,
P.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023305
.
18.
Yamamoto
,
K.
,
Satake
,
S.
,
Yamashita
,
H.
,
Takada
,
N.
, and
Misawa
,
M.
, 2006, “
Lattice Boltzmann Simulation on Porous Structure and Soot Accumulation
,”
Math. Comput. Simul.
0378-4754,
72
, pp.
257
263
.
19.
Yamamoto
,
K.
,
Takada
,
N.
, and
Misawa
,
M.
, 2005, “
Combustion Simulation With Lattice Boltzmann Method in a Three-Dimensional Porous Structure
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1509
1515
.
20.
Yamamoto
,
K.
,
Oohori
,
S.
,
Yamashita
,
H.
, and
Daido
,
S.
, 2009, “
Simulation on Soot Deposition and Combustion in Diesel Particulate Filter
,”
Proc. Combust. Inst.
1540-7489,
32
, pp.
1965
1972
.
21.
Haussener
,
S.
,
Lipiński
,
W.
,
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2009, “
Tomographic Characterization of a Semitransparent-Particle Packed Bed and Determination of Its Thermal Radiative Properties
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
072701
.
22.
Lee
,
K. B.
,
Thring
,
M. W.
, and
Beer
,
J. M.
, 1962, “
On the Rate of Combustion of Soot in a Laminar Soot Flame
,”
Combust. Flame
0010-2180,
6
, pp.
137
145
.
23.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
0021-9991,
146
, pp.
282
300
.
24.
Inamuro
,
T.
,
Yoshino
,
M.
, and
Ogino
,
F.
, 1999, “
Lattice Boltzmann Simulation of Flows in a Three-Dimensional Porous Structure
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
, pp.
737
748
.
25.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
26.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2005, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
839
847
.
You do not currently have access to this content.