A comprehensive investigation is made to understand the effect of harmonic vibration on the onset of convection in a horizontal anisotropic porous layer heated either from below or from above. The layer is subject to vertical mechanical vibrations of arbitrary amplitude and frequency. The porous medium is assumed to be both mechanically and thermally anisotropic, and Brinkman’s law is invoked to model the momentum balance. Both continued fraction and Hill’s infinite determinant methods are used to determine the convective instability threshold with the aid of Floquet theory. The synchronous and subharmonic resonant regions of dynamic instability are determined and their critical boundaries are found. The results show that anisotropy in permeability favors convection whereas that in thermal conductivity suppresses it with a wider cellular pattern at the instability threshold. The influence of vibration parameters and heating condition on the anisotropy effects and the competition between the synchronous and subharmonic modes are discussed. This study also reveals the existence of a closed disconnected instability region in certain areas of the parameter space for the first time in literature.

1.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
Springer-Verlag
,
New York
.
2.
Castinel
,
G.
, and
Combarnous
,
M.
, 1974, “
Critere D’apparition de la Convection Naturelle Dans Une Couche Poreuse Anisotrope Horizontal
,”
C. R. Acad. Sci.
,
B278
, pp.
701
704
.
3.
Epherre
,
J. F.
, 1977, “
Criterion for the Appearance of Natural Convection in an Anisotropic Porous Layer
,”
Int. Chem. Eng.
0020-6318,
17
, pp.
615
616
.
4.
McKibbin
,
R.
, 1986, “
Thermal Convection in a Porous Layer: Effects of Anisotropy and Surface Boundary Conditions
,”
Transp. Porous Media
0169-3913,
1
, pp.
271
292
.
5.
Tyvand
,
P. A.
, and
Storesletten
,
L.
, 1991, “
Onset of Convection in an Anisotropic Porous Medium With Oblique Principal Axes
,”
J. Fluid Mech.
0022-1120,
226
, pp.
371
382
.
6.
Storesletten
,
L.
, 1993, “
Natural Convection in a Horizontal Porous Layer With Anisotropic Thermal Diffusivity
,”
Transp. Porous Media
0169-3913,
12
, pp.
19
29
.
7.
Straughan
,
B.
, and
Walker
,
D.
, 1996, “
Anisotropic Porous Penetrative Convection
,”
Proc. R. Soc. London, Ser. A
0950-1207,
452
, pp.
97
115
.
8.
Rees
,
D. A. S.
, and
Postelnicu
,
A.
, 2001, “
The Onset of Convection in an Inclined Anisotropic Porous Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4127
4138
.
9.
Malashetty
,
M. S.
,
Shivakumara
,
I. S.
, and
Kulkarni
,
S.
, 2005, “
The Onset of Convection in an Anisotropic Porous Layer Using a Thermal Non-Equilibrium Model
,”
Transp. Porous Media
0169-3913,
60
, pp.
199
215
.
10.
Govender
,
S.
, 2006, “
On the Effect of Anisotropy on the Stability of Convection in Rotating Porous Media
,”
Transp. Porous Media
0169-3913,
64
, pp.
413
422
.
11.
Saravanan
,
S.
, 2009, “
Centrifugal Acceleration Induced Convection in a Magnetic Fluid Saturated Anisotropic Rotating Porous Medium
,”
Transp. Porous Media
0169-3913,
77
, pp.
79
86
.
12.
Vanishree
,
R. K.
, and
Siddheshwar
,
P. G.
, 2010, “
Effect of Rotation on Thermal Convection in an Anisotropic Porous Medium With Temperature-Dependent Viscosity
,”
Transp. Porous Media
0169-3913,
81
, pp.
73
87
.
13.
Saravanan
,
S.
, and
Sivakumar
,
T.
, 2010, “
Onset of Filtration Convection in a Vibrating Medium: The Brinkman Model
,”
Phys. Fluids
1070-6631,
22
, p.
034104
.
14.
Saravanan
,
S.
, and
Purusothaman
,
A.
, 2009, “
Floquet Instability of a Gravity Modulated Rayleigh-Bénard Problem in an Anisotropic Porous Medium
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
2085
2091
.
15.
Malashetty
,
M. S.
, and
Padmavathy
,
V.
, 1997, “
Effect of Gravity Modulation on the Onset of Convection in a Fluid and Porous Layer
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
829
840
.
16.
Markman
,
G. S.
, and
Yudovich
,
V. I.
, 1972, “
A Numerical Study of the Occurrence of Convection in a Liquid Layer Under the Influence of Periodic External Forces
,”
Mekh. Zhidk. Gaza
,
3
, pp.
81
86
.
17.
Razi
,
Y. P.
,
Mojtabi
,
A.
, and
Charrier-Mojtabi
,
M. C.
, 2009, “
A Summary of New Predictive High Frequency Thermo-Vibrational Models in Porous Media
,”
Transp. Porous Media
0169-3913,
77
, pp.
207
228
.
18.
Aniss
,
S.
,
Souhar
,
M.
, and
Belhaq
,
M.
, 2000, “
Asymptotic Study of the Convective Parametric Instability in Hele-Shaw Cell
,”
Phys. Fluids
1070-6631,
12
, pp.
262
268
.
19.
Strong
,
N.
, 2008, “
Effect of Vertical Modulation on the Onset of Filtration Convection
,”
J. Math. Fluid Mech.
1422-6928,
10
, pp.
488
502
.
20.
Grosan
,
T.
,
Postelnicu
,
A.
, and
Pop
,
I.
, 2010, “
Brinkman Flow of a Viscous Fluid Through a Spherical Porous Medium Embedded in Another Porous Medium
,”
Transp. Porous Media
0169-3913,
81
, pp.
89
103
.
21.
Volmar
,
U. E.
, and
Muller
,
H. W.
, 1997, “
Quasiperiodic Patterns in Rayleigh-Bénard Convection Under Gravity Modulation
,”
Phys. Rev. E
1063-651X,
56
, pp.
5423
5430
.
22.
Chen
,
Y. M.
, and
Pearlstein
,
A. J.
, 1989, “
Stability of Free-Convection Flows of Variable-Viscosity in Vertical and Inclined slots
,”
J. Fluid Mech.
0022-1120,
198
, pp.
513
541
.
You do not currently have access to this content.