An experimental study of two-phase heat transfer coefficients was carried out using R134a in uniformly heated horizontal circular microtubes with diameters from 0.50 mm to 1.60 mm over a range of mass fluxes, heat fluxes, saturation pressures, and vapor qualities. Heat transfer coefficients increased with increasing heat flux and saturation pressure but were independent of mass flux. The effects of vapor quality on heat transfer coefficients were less pronounced and varied depending on the quality. The data were compared with seven flow boiling correlations. None of the correlations predicted the experimental data very well, although they generally predicted the correct trends within limits of experimental error. A correlation was developed, which predicted the heat transfer coefficients with a mean average error of 29%. 80% of the data points were within the ±30% error limit.

1.
Moore
,
E. G.
, 1965, “
Cramming More Components Onto Integrated Circuits
,”
Electronics
0013-5070,
38
(
8
), pp.
114
117
.
2.
Huo
,
X.
,
Chen
,
L.
,
Tian
,
Y. S.
, and
Karayiannis
,
T. G.
, 2004, “
Flow Boiling and Flow Regimes in Small Diameter Tubes
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
1225
1239
.
3.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2009, “
Effects of Heat Flux, Mass Flux, Vapor Quality and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
142
154
.
4.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
927
941
.
5.
Bao
,
Z. Y.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
, 2000, “
Flow Boiling Heat Transfer of Freon R11 and HCFC123 in Narrow Passages
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3347
3358
.
6.
Wambsganss
,
M. W.
,
France
,
D. M.
,
Jendraejczyk
,
J. A.
, and
Tran
,
T. N.
, 1993, “
Boiling Heat Transfer in Horizontal Small-Diameter Tube
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
963
972
.
7.
Tran
,
T. N.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
, 1996, “
Small Circular and Rectangular Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
0301-9322,
22
(
3
), pp.
485
498
.
8.
Agostini
,
B.
, and
Bontemps
,
A.
, 2005, “
Vertical Flow Boiling of Refrigerant R134a in Small Channels
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
296
306
.
9.
Saitoh
,
S.
,
Daiguji
,
H.
, and
Hihara
,
E.
, 2005, “
Effect of Tube Diameter on Boiling Heat Transfer of R-134a in Horizontal Small-Diameter Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4973
4984
.
10.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
941
955
.
11.
Qu
,
W.
, and
Mudawar
,
I.
, 2005, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
12.
Lie
,
Y. M.
,
Su
,
F. Q.
,
Lai
,
R. L.
, and
Lin
,
T. F.
, 2006, “
Experimental Study of Evaporation Heat Transfer Characteristics of Refrigerants R-134a and R-407C in Horizontal Small Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
207
218
.
13.
Jacobi
,
A. M.
, and
Thome
,
J. R.
, 2002, “
Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
1131
1136
.
14.
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
, 2010, “
Flow Boiling Heat Transfer of R134a and R245fa in a 2.3 mm Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
2459
2468
.
15.
Kuwahara
,
K.
,
Koyama
,
S.
, and
Hashimoto
,
Y.
, 2000, “
Characteristics of Evaporation Heat Transfer and Flow Pattern of Pure Refrigerant HFC134a in a Horizontal Capillary Tube
,”
JSME Int. J., Ser. B
1340-8054,
43
(
4
), pp.
640
646
.
16.
Basu
,
S.
,
Ndaos
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2010, “
Heat Transfer Characteristics of Flow Boiling of R134a in Uniformly Heated Horizontal Circular Microtubes
,”
Proceedings of the International Heat Transfer Conference
, Washington, DC, Aug. 8–13, Paper No. IHTC14-22656.
17.
Basu
,
S.
,
Ndao
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2011, “
Flow Boiling of R134a in Circular Microtubes—Part II: Study of Critical Heat Flux Condition
,”
ASME J. Heat Transfer
0022-1481,
133
(
5
), p.
051503
.
18.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2003, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
0145-7632,
24
(
1
), pp.
3
17
.
19.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
, 2000, “
Fluid Flow and Heat Transfer at Micro and Meso-Scales With Application to Heat Exchanger Design
,”
Appl. Mech. Rev.
0003-6900,
53
, pp.
175
193
.
20.
Kew
,
P. A.
, and
Cornwell
,
K.
, 1997, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Therm. Eng.
1359-4311,
17
, pp.
705
715
.
21.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J. -Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P.
, 2009, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
5661
5674
.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
23.
Basu
,
S.
, 2009, “
Heat Transfer Characteristics for Flow Boiling of R134a in Horizontal Circular Microtubes
,” MS thesis, Rensselaer Polytechnic Institute, Troy, NY.
24.
Gnielinski
,
V.
, 1976, “
New Equations for Heat Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
25.
Grohmann
,
S.
, 2005, “
Measurement and Modeling of Single-Phase and Flow-Boiling Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4073
4089
.
26.
Yen
,
T. H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2003, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
1771
1792
.
27.
Lazarek
,
G. M.
, and
Black
,
S. H.
, 1982, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
945
960
.
28.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
, 2004, “
An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels
,”
Heat Transfer Eng.
0145-7632,
25
(
3
), pp.
86
93
.
29.
Liu
,
Z.
, and
Winterton
,
R. H. S.
, 1991, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2759
2766
.
30.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
, 2002, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
53
64
.
31.
Sumith
,
B.
,
Kaminaga
,
F.
, and
Matsumura
,
K.
, 2003, “
Saturated Flow Boiling of Water in Vertical Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
0894-1777,
27
, pp.
789
801
.
32.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels With Low Aspect Ratios
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
2043
2062
.
33.
Saitoh
,
S.
,
Daiguji
,
H.
, and
Hihara
,
E.
, 2007, “
Correlation for Boiling Heat Transfer of R-134a in Horizontal Tubes Including Effect of Tube Diameter
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
5215
5225
.
34.
Zhang
,
W.
,
Hibiki
,
T.
, and
Mishima
,
K.
, 2004, “
Correlation for Flow Boiling Heat Transfer in Mini-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5749
5763
.
35.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3375
3385
.
36.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3387
3401
.
You do not currently have access to this content.