Phonon transport across constrictions formed by a nanowire or a nanoparticle on a substrate is studied by a numerical solution of the gray Boltzmann transport equation (BTE) resolving the effects of two length scales that govern problems of practical importance. Predictions of total thermal resistance for wire/substrate and particle/substrate combinations are made for the entire range of Knudsen number, with an emphasis on resolving transport in the mesoscopic regime where ballistic-diffusive mechanisms operate and analytical expressions are not available. The relative magnitudes of bulk and constriction resistance are established, and a correlation for overall thermal resistance spanning the range of practical Knudsen numbers is provided.

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
2.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Mater.
1476-1122,
2
(
11
), pp.
731
734
.
3.
Kumar
,
S.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2005, “
Percolating Conduction in Finite Nanotube Networks
,”
Phys. Rev. Lett.
0031-9007,
95
(
6
), p.
066802
.
4.
Yang
,
R.
, and
Chen
,
G.
, 2004, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposities
,”
Phys. Rev. B
0556-2805,
69
(
19
), p.
195316
.
5.
Martel
,
R.
,
Schmidt
,
T
,
Shea
,
H. R.
,
Hertel
,
T.
, and
Avouris
,
Ph.
, 1998, “
Single-and Multi-Wall Carbon Nanotube Field-Effect Transistors
,”
Appl. Phys. Lett.
0003-6951,
73
(
17
), pp.
2447
2449
.
6.
Xiang
,
J.
,
Lu
,
W.
,
Hu
,
Y.
,
Wu
,
Y.
,
Yan
,
H.
, and
Lieber
,
C. M.
, 2006, “
Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors
,”
Nature (London)
0028-0836,
441
, pp.
489
493
.
7.
Pop
,
E.
,
Mann
,
D.
,
Goodson
,
K. E.
, and
Dai
,
H.
, 2007, “
Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates
,”
J. Appl. Phys.
0021-8979,
101
(
9
), p.
093710
.
8.
Pop
,
E.
, 2008, “
The Role of Electrical and Thermal Contact Resistance for Joule Breakdown of Single-Wall Carbon Nanotubes
,”
Nanotechnology
0957-4484,
19
(
29
), p.
295202
.
9.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits Export
,”
Phys. Rev. Lett.
0031-9007,
95
(
9
), p.
096105
.
10.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,”
Appl. Phys. Lett.
0003-6951,
90
(
9
), p.
093513
.
11.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Hu
,
H.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
0021-8979,
101
(
5
), p.
054313
.
12.
Linderman
,
R.
,
Brunschwiler
,
T.
,
Smith
,
B.
, and
Michel
,
B.
, 2007, “
High-Performance Thermal Interface Technology Overview
,”
THERMINIC
, Budapest, Hungary.
13.
Shi
,
L.
, and
Majumdar
,
A.
, 2002, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
329
337
.
14.
King
,
W. P.
, and
Goodson
,
K. E.
, 2002, “
Thermal Writing and Nanoimaging With a Heated Atomic Force Microscope Cantilever
,”
ASME J. Heat Transfer
0022-1481,
124
, p.
597
.
15.
Prasher
,
R.
, 2005, “
Predicting the Thermal Resistance of Nanosized Constrictions
,”
Nano Lett.
1530-6984,
5
(
11
), pp.
2155
2159
.
16.
Bahadur
,
V.
,
Xu
,
J.
,
Liu
,
Y.
, and
Fisher
,
T. S.
, 2005, “
Thermal Resistance of Nanowire-Plane Interfaces
,”
ASME J. Heat Transfer
0022-1481,
164
(
6
), pp.
164
168
.
17.
Duan
,
X.
,
Niu
,
C.
,
Sahi
,
V.
,
Chen
,
J.
,
Parce
,
J.
,
Parce
,
J. W.
,
Empedocles
,
S.
, and
Goldman
,
J. L.
, 2003, “
High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons
,”
Nature (London)
0028-0836,
425
, pp.
274
278
.
18.
Lifshitz
,
R.
, and
Roukes
,
M. L.
, 2000, “
Thermoelastic Damping in Micro- and Nanomechanical Systems
,”
Phys. Rev. B
0556-2805,
61
(
8
), pp.
5600
5609
.
19.
Bernasconi
,
A.
,
Sleator
,
T.
,
Posselt
,
D.
,
Kjems
,
J. K.
, and
Ott
,
H. R.
, 1992, “
Dynamic Properties of Silica Aerogels as Deduced From Specific-Heat and Thermal-Conductivity Measurements
,”
Phys. Rev. B
0556-2805,
45
, pp.
10363
10376
.
20.
Domingues
,
G.
,
Rochais
,
D.
, and
Volz
,
S.
, 2008, “
Thermal Contact Resistance Between Two Nanoparticles
,”
J. Comput. Theor. Nanosci.
1546-1955,
5
(
2
), pp.
153
156
.
21.
Prasher
,
R.
, 2006, “
Ultralow Thermal Conductivity of a Packed Bed of Crystalline Nanoparticles: A Theoretical Study
,”
Phys. Rev. B
0556-2805,
74
, p.
165413
.
22.
Zhang
,
J.
,
Fisher
,
T. S.
,
Ramanchandran
,
P. V.
,
Gore
,
J. P.
, and
Mudawar
,
I.
, 2005, “
A Review of Heat Transfer Issues in Hydrogen Storage Technologies
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1391
1399
.
23.
Wexler
,
G.
, 1966, “
The Size Effect and the Non-Local Boltzmann Transport Equation in Orifice and Disk Geometry
,”
Proc. Phys. Soc. London
0370-1328,
89
, pp.
927
941
.
24.
Sharvin
,
Y. V.
, 1965, “
A Possible Method for Studying Fermi Surfaces
,”
Sov. Phys. JETP
0038-5646,
21
, pp.
655
656
.
25.
Nikolić
,
B.
, and
Allen
,
P. B.
, 1999, “
Electron Transport Through a Circular Constriction
,”
Phys. Rev. B
0556-2805,
60
(
6
), pp.
3963
3969
.
26.
McGee
,
G. R.
,
Schankula
,
M. H.
, and
Yovanovich
,
M. M.
, 1985, “
Thermal Resistance of Cylinder-Flat Contacts: Theoretical Analysis and Experimental Verification of a Line-Contact Model
,”
Nucl. Eng. Des.
0029-5493,
86
, pp.
369
381
.
27.
Yovanovich
,
M. M.
, 1967, “
Thermal Contact Resistance Across Elastically Deformed Spheres
,”
J. Spacecr. Rockets
0022-4650,
4
(
1
), pp.
119
122
.
28.
de Jong
,
M. J. M.
, 1994, “
Transition From Sharvin to Drude Resistance in High Mobility Wires
,”
Phys. Rev. B
0556-2805,
49
(
11
), pp.
7778
7781
.
29.
Sondheimer
,
E. H.
, 1952, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
0001-8732,
1
(
1
), pp.
1
42
.
30.
Pascual-Gutiérrez
,
J. A.
,
Murthy
,
J. Y.
, and
Viskanta
,
R. V.
, 2007, “
Limits of Size Confinement in Silicon Thin Films and Wires
,”
J. Appl. Phys.
0021-8979,
102
(
3
), p.
034315
.
31.
Schwab
,
K.
,
Henriksen
,
E. A.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
, 2000, “
Measurement of the Quantum of Thermal Conductance
,”
Nature (London)
0028-0836,
404
, pp.
974
977
.
32.
Cross
,
M. C.
, and
Lifshitz
,
R.
, 2001, “
Elastic Wave Transmission at an Abrupt Junction in a Thin Plate With Application to Heat Transport and Vibrations in Mesoscopic Systems
,”
Phys. Rev. B
0556-2805,
64
(
8
), p.
085324
.
33.
Prasher
,
R.
,
Tong
,
T.
, and
Majumdar
,
A.
, 2007, “
An Acoustic and Dimensional Mismatch Model for Thermal Boundary Conductance Between a Vertical Mesoscopic Nanowire/Nanotube and a Bulk Substrate
,”
J. Appl. Phys.
0021-8979,
102
(
10
), p.
104312
.
34.
Saha
,
S.
, and
Shi
,
L.
, 2007, “
Molecular Dynamics Simulation of Thermal Transport at a Nanometer Scale Constriction in Silicon
,”
J. Appl. Phys.
0021-8979,
101
, p.
074304
.
35.
Chung
,
J. D.
, and
Kaviany
,
M.
, 2000, “
Effects of Phonon Pore Scattering and Pore Randomness on Effective Conductivity of Porous Silicon
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
4
), pp.
521
538
.
36.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
, 2005, “
Review of Multiscale Simulation in Submicron Heat Transfer
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
3
(
1
), pp.
5
32
.
37.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2002, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1176
1181
.
38.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
0556-2805,
57
(
23
), pp.
14958
14973
.
39.
Vincenti
,
W. J.
, and
Kruger
,
C. H.
, 1965,
Introduction to Physical Gas Dynamics
,
Wiley
,
New York
.
40.
Gad-el-Hak
,
M.
, 2001,
The MEMS Handbook
,
1st ed.
,
CRC
,
Boca Raton, Fl
.
41.
Wadsworth
,
D. C.
, 1993, “
Slip Effects in a Confined Rarefied Gas. I: Temperature Slip
,”
Phys. Fluids A
0899-8213,
5
(
7
), pp.
1831
1839
.
42.
Singh
,
D.
,
Guo
,
X.
,
Alexeenko
,
A.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
, 2009, “
Modeling of Subcontinuum Thermal Transport Across Semiconductor-Gas Interfaces
,”
J. Appl. Phys.
0021-8979,
106
, p.
024314
.
43.
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2006, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1703
1718
.
You do not currently have access to this content.