Ultrashort laser pulses can be generated in the form of a pulse train. In this paper, the ultrafast phase change processes of a 1μm free-standing gold film irradiated by femtosecond laser pulse trains are simulated numerically. A two-temperature model coupled with interface tracking method is developed to describe the ultrafast melting, vaporization, and resolidification processes. To deal with the large span in time scale, variable time steps are adopted. A laser pulse train consists of several pulse bursts with a repetition rate of 0.5–1 MHz. Each pulse burst contains 3–10 pulses with an interval of 50 ps–10 ns. The simulation results show that with such configuration, to achieve the same melting depth, the maximum temperature in the film decreases significantly in comparison to that of a single pulse. Although the total energy depositing on the film will be lifted, more energy will be transferred into the deeper part, instead of accumulating in the subsurface layer. This leads to lower temperature and temperature gradient, which is favorable in laser sintering and laser machining.

1.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys. JETP
0038-5646,
39
(
2
), pp.
375
377
.
2.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
(
4
), pp.
835
841
.
3.
Tzou
,
D. Y.
, 1997,
Macro- to Microscale Heat Transfer
,
Taylor & Francis
,
Washington, DC
.
4.
Tzou
,
D. Y.
, 2006, “
Computational Techniques for Microscale Heat Transfer
,”
Handbook of Numerical Heat Transfer
,
2nd ed.
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
Wiley
,
Hoboken, NJ
.
5.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2005, “
Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films
,”
ASME J. Heat Transfer
0022-1481,
127
(
10
), pp.
1167
1173
.
6.
Chen
,
J. K.
,
Tzou
,
D. Y.
, and
Beraun
,
J. E.
, 2006, “
A Semiclassical Two-Temperature Model for Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
1–2
), pp.
307
316
.
7.
Chowdhury
,
I. H.
, and
Xu
,
X.
, 2003, “
Heat Transfer in Femtosecond Laser Processing of Metal
,”
Numer. Heat Transfer, Part A
1040-7782,
44
(
3
), pp.
219
232
.
8.
Fang
,
R. R.
,
Zhang
,
D. M.
,
Wei
,
H.
,
Hu
,
D. Z.
,
Li
,
Z. H.
,
Tan
,
X. Y.
,
Sun
,
M.
, and
Yang
,
F. X.
, 2008, “
A Unified Thermal Model of Thermophysical Effects With Pulse Width From Nanosecond to Femtosecond
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
42
(
3
), pp.
229
234
.
9.
Chen
,
J. K.
, and
Beraun
,
J. E.
, 2001, “
Numerical Study of Ultrashort Laser Pulse Interactions With Metal Films
,”
Numer. Heat Transfer, Part A
1040-7782,
40
(
1
), pp.
1
20
.
10.
Huang
,
J.
,
Zhang
,
Y. W.
, and
Chen
,
J. K.
, 2009, “
Ultrafast Solid-Liquid-Vapor Phase Change of a Gold Film Induced by Pico- to Femtosecond Lasers
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
95
(
3
), pp.
643
653
.
11.
Sim
,
H. S.
, and
Lee
,
S. H.
, 2007, “
Numerical Investigation on Nonequilibrium Energy Transfer in Thin Metal Film Structures During the Irradiation of Femtosecond Pulse Laser
,”
Transactions of the Korean Institute of Electrical Engineers
,
56
(
2
), pp.
367
373
.
12.
Jiang
,
L.
, and
Tsai
,
H. -L.
, 2007, “
Modeling of Ultrashort Laser Pulse-Train Processing of Metal Thin Films
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
17–18
), pp.
3461
3470
.
13.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2006, “
Energy Transport and Nanostructuring of Dielectrics by Femtosecond Laser Pulse Trains
,”
ASME J. Heat Transfer
0022-1481,
128
(
9
), pp.
926
933
.
14.
Zhang
,
Y.
, and
Chen
,
J. K.
, 2007, “
Melting and Resolidification of Gold Film Irradiated by Nano- to Femtosecond Lasers
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
88
(
2
), pp.
289
297
.
15.
Huang
,
J.
,
Zhang
,
Y. W.
, and
Chen
,
J. K.
, 2009, “
Ultrafast Solid-Liquid-Vapor Phase Change in a Thin Gold Film Irradiated by Multiple Femtosecond Laser Pulses
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
13–14
), pp.
3091
3100
.
16.
Chen
,
J. K.
, and
Beraun
,
J. E.
, 2004, “
Superheating and Material Ablation of Metals by Multiple Ultrashort Laser Pulses
,”
Journal of Directed Energy
,
1
, pp.
93
109
. 0002-7820
17.
Anisimov
,
S. I.
, and
Rethfeld
,
B.
, 1997, “
Theory of Ultrashort Laser Pulse Interaction With a Metal
,”
Proc. SPIE
0277-786X,
3093
, pp.
192
202
.
18.
Chen
,
J. K.
,
Latham
,
W. P.
, and
Beraun
,
J. E.
, 2005, “
The Role of Electron-Phonon Coupling in Ultrafast Laser Heating
,”
J. Laser Appl.
1042-346X,
17
(
1
), pp.
63
68
.
19.
Kuo
,
L. S.
, and
Qiu
,
T. Q.
, 1996, “
Microscale Energy Transfer During Picosecond Laser Melting of Metal Films
,”
ASME National Heat Transfer Conference
, Vol.
1
, pp.
149
157
.
20.
Klemens
,
P. G.
, and
Williams
,
R. K.
, 1986, “
Thermal Conductivity of Metals and Alloys
,”
International Metals Reviews
,
31
(
5
), pp.
197
215
.
21.
Faghri
,
A.
, and
Zhang
,
Y.
, 2006,
Transport Phenomena in Multiphase Systems
,
Elsevier Academic
,
Burlington, MA
.
22.
Patankar
,
S.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
23.
Zhang
,
Y.
, and
Chen
,
J. K.
, 2008, “
An Interfacial Tracking Method for Ultrashort Pulse Laser Melting and Resolidification of a Thin Metal Film
,”
ASME J. Heat Transfer
0022-1481,
130
(
6
), pp.
062401
.
24.
Barin
,
I.
, 1993,
Thermochemical Data of Pure Substance
, Pt.1,
VCH
,
New York
.
You do not currently have access to this content.