A comprehensive model based on finite volume method was developed to analyze the heat-up and the melting of ceramic particles injected into a microwave excited laminar air plasma flow field. Plasma flow field was simulated as a hot gas flow generated by volumetric heat addition in the microwave coupling region, resulting in a temperature of 6000 K. Alumina and zirconia particles of different diameters were injected into the axisymmetric laminar plasma flow at different injection velocities and locations. Additionally, noncontinuum effects, variation of transport properties of plasma surrounding the spherical particles and absorption of microwave radiation in the ceramic particles were considered in the model. Model predictions suggest that zirconia and alumina particles with diameters less than 50μm can be effectively melted in a microwave plasma and can produce more uniform melt states. Microwave plasma environment with the ability to inject particles into the plasma core provide the opportunity to create more uniform melt states as compared with dc arc plasmas that are influenced by characteristic arc root fluctuations and turbulent dispersions.

1.
Pawlowski
,
L.
, 1995,
The Science and Engineering of Thermal Spray Coatings
,
Wiley
,
New York
.
2.
Bisson
,
J. F.
,
Gauthier
,
B.
, and
Moreau
,
C.
, 2003, “
Effect of Plasma Fluctuations on In-Flight Particle Parameters
,”
J. Therm. Spray Technol.
1059-9630,
12
(
1
), pp.
38
43
.
3.
Bisson
,
J. F.
, and
Moreau
,
C.
, 2003, “
Effect of Direct-Current Plasma Fluctuations on In-Flight Particle Parameters: Part II
,”
J. Therm. Spray Technol.
1059-9630,
12
(
2
), pp.
258
264
4.
Al-Shamma’a
,
A. I.
,
Wylie
,
S. R.
,
Lucas
,
J.
, and
Stuart
,
R. A.
, 2002, “
Microwave Plasma Jet for Material Processing at 2.45 GHz
,”
J. Mater. Process. Technol.
0924-0136,
121
, pp.
143
147
.
5.
Wylie
,
S. R.
,
Al-Shamma’a
,
A. I.
,
Lucas
,
J.
, and
Stuart
,
R. A.
, 2004, “
An Atmospheric Microwave Plasma Jet for Ceramic Material Processing
,”
J. Mater. Process. Technol.
0924-0136,
153–154
, pp.
288
293
.
6.
Hong
,
Y. C.
,
Uhm
,
H. S.
, and
Cho
,
S. C.
, 2009, “
Microwave Plasma Torch Operating at a Low Pressure for Material Processing
,”
Thin Solid Films
0040-6090,
517
, pp.
4226
4228
.
7.
Green
,
K. M.
,
Borras
,
M. C.
,
Woskov
,
P. P.
,
Flores
,
G. J.
, III
,
Hadidi
,
K.
, and
Thomas
,
P.
, 2001, “
Electronic Excitation Temperature Profiles in an Air Microwave Torch
,”
IEEE Trans. Plasma Sci.
0093-3813,
29
(
2
), pp.
399
406
.
8.
Hadidi
,
K.
, and
Woskov
,
P.
, 1999, “
Efficient, Modular Microwave Plasma Torch for Thermal Treatment
,” PSFC MIT.
9.
Vollath
,
D.
, and
Sickafus
,
K. E.
, 1993, “
Synthesis of Ceramic Oxide Powders in a Microwave Plasma Device
,”
J. Mater. Res.
0884-2914,
8
(
11
), pp.
2978
2984
.
10.
Meillot
,
E.
,
Guenadou
,
D.
, and
Bourgeois
,
C.
, 2008, “
Three-Dimension and Transient D.C. Plasma Flow Modeling
,”
Plasma Chem. Plasma Process.
0272-4324,
28
(
1
), pp.
69
84
.
11.
Cetegen
,
B. M.
, and
Basu
,
S.
, 2009, “
Review of Modeling of Liquid Precursor Droplets and Particles Injected Into Plasmas and High Velocity Oxy-Fuel (HVOF) Flame Jets for Thermal Spray Applications
,”
J. Therm. Spray Technol.
1059-9630,
18
(
5
), pp.
769
793
.
12.
Bourdin
,
E.
,
Fauchais
,
P.
, and
Boulos
,
M.
, 1983, “
Transient Heat Conduction Under Plasma Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
4
), pp.
567
582
.
13.
Vardelle
,
M.
,
Vardelle
,
A.
, and
Boulos
,
M. I.
, 1983, “
Plasma-Particle Momentum and Heat Transfer: Modelling and Measurements
,”
AIChE J.
0001-1541,
29
(
2
), pp.
236
243
.
14.
Pfender
,
E.
, and
Lee
,
Y. C.
, 1985, “
Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I. The Motion of a Single Particle Without Thermal Effects
,”
Plasma Chem. Plasma Process.
0272-4324,
5
(
3
), pp.
211
237
.
15.
Chyou
,
Y. P.
, and
Pfender
,
E.
, 1989, “
Behavior of Particulates in Thermal Plasma Flows
,”
Plasma Chem. Plasma Process.
0272-4324,
9
(
1
), pp.
45
71
.
16.
Lee
,
Y. C.
,
Chyou
,
Y. P.
, and
Pfender
,
E.
, 1985, “
Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part II. Particle Heat and Mass Transfer in Thermal Plasmas
,”
Plasma Chem. Plasma Process.
0272-4324,
5
(
4
), pp.
391
414
.
17.
Chen
,
X.
, and
Pfender
,
E.
, 1983, “
Effect of Knudsen Number on Heat Transfer to a Particle Immersed Into a Thermal Plasma
,”
Plasma Chem. Plasma Process.
0272-4324,
3
(
1
), pp.
97
113
.
18.
Lee
,
Y. C.
, and
Pfender
,
E.
, 1987, “
Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part III. Thermal Plasma Jet Reactors and Multiparticle Injection
,”
Plasma Chem. Plasma Process.
0272-4324,
7
(
1
), pp.
1
27
.
19.
Chen
,
X.
, and
Pfender
,
E.
, 1982, “
Unsteady Heating and Radiation Effects of Small Particles in a Thermal Plasma
,”
Plasma Chem. Plasma Process.
0272-4324,
2
(
3
), pp.
293
316
.
20.
Wan
,
Y. P.
,
Prasad
,
V.
,
Wang
,
G. -X.
,
Sampath
,
S.
, and
Fincke
,
J. R.
, 1999, “
Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
691
699
.
21.
Wan
,
Y. P.
,
Fincke
,
J. R.
,
Sampath
,
S.
,
Prasad
,
V.
, and
Herman
,
H.
, 2002, “
Modeling and Experimental Observation of Evaporation From Oxidizing Molybdenum Particles Entrained in a Thermal Plasma Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1007
1015
.
22.
Xiong
,
H. -B.
,
Zheng
,
L. -L.
,
Sampath
,
S.
,
Williamson
,
R. L.
, and
Fincke
,
J. R.
, 2004, “
Three-Dimensional Simulations of Plasma Spray: Effects of Carrier Gas Flow and Particle Injection on Plasma Jet and Entrained Particle Behavior
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5189
5200
.
23.
Ettouil
,
F. B.
,
Patreyon
,
B.
,
Ageorges
,
H.
,
Ganaoui
,
M. E.
,
Fauchais
,
P.
, and
Mazhorova
,
O.
, 2007, “
Fast Modeling of Phase Changes in a Particle Injected Within a D.C. Plasma Jet
,”
J. Therm. Spray Technol.
1059-9630,
16
, pp.
744
750
.
24.
Ahmed
,
I.
, and
Bergman
,
T.
, 2000, “
Three-Dimensional Simulation of Thermal Plasma Spraying of Partially Molten Ceramic Agglomerates
,”
J. Therm. Spray Technol.
1059-9630,
9
(
2
), pp.
215
224
.
25.
Li
,
H. -P.
, and
Xi
,
C.
, 2002, “
Three-Dimensional Modeling of the Turbulent Plasma Jet Impinging Upon a Flat Plate and With Transverse Particle and Carrier-Gas Injection
,”
Plasma Chem. Plasma Process.
0272-4324,
22
(
1
), pp.
27
58
.
26.
Boulos
,
M. I.
,
Fauchais
,
P.
, and
Pfender
,
E.
, 1994,
Thermal Plasmas Fundamentals and Applications
, Vol.
1
,
Plenum
,
New York
.
27.
White
,
F. M.
, 1974,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
28.
Touloukian
,
Y. S.
, 1967,
Thermophysical Properties of High Temperature Solid Materials, Vol. 4: Oxides and Their Solutions and Mixtures
,
Macmillan
,
New York
.
29.
NIST Structural Ceramics Database (SCD), SCD Citation No. Z00181.
30.
Cao
,
Y.
, and
Faghri
,
A.
, 1990, “
A Numerical Analysis of Phase-Change Problems Including Natural Convection
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
812
816
.
31.
Zhao
,
C.
,
Vleugels
,
J.
,
Groffils
,
C.
,
Luypaert
,
P. J.
, and
Van Der Biest
,
O.
, 2000, “
Hybrid Sintering With a Tubular Susceptor in a Cylindrical Single-Mode Microwave Furnace
,”
Acta Mater.
1359-6454,
48
, pp.
3795
3801
.
32.
Mizuno
,
M.
,
Obata
,
S.
,
Takayama
,
S.
,
Ito
,
S.
,
Kato
,
N.
,
Hirai
,
T.
, and
Sato
,
M.
, 2004, “
Sintering of Alumina by 2.45 GHz Microwave Heating
,”
J. Eur. Ceram. Soc.
0955-2219,
24
, pp.
387
391
.
33.
Wang
,
J.
,
Binner
,
J.
,
Vaidyanathan
,
B.
,
Joonum
,
N.
,
Kilner
,
J.
,
Dimitras
,
G.
, and
Cross
,
T. E.
, 2006, “
Evidence for the Microwave Effect During Hybrid Sintering
,”
J. Am. Ceram. Soc.
0002-7820,
89
(
6
), pp.
1977
1984
.
34.
Zhang
,
C.
,
Zhang
,
G.
,
Leparoux
,
S.
,
Liao
,
H.
,
Li
,
C.
,
Li
,
C. -J.
, and
Coddet
,
C.
, 2008, “
Microwave Sintering of Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte Coating
,”
J. Eur. Ceram. Soc.
0955-2219,
28
, pp.
2529
2538
.
35.
Osepchuk
,
J. M.
, 1981, “
Microwave Technology
,”
Kirk–Othmer, Encyclopedia of Chemical Technology
,
R. E.
Kirk
and
D. F.
Othmer
, eds.,
Wiley
,
New York
, pp.
492
522
.
36.
Darby
,
G. J.
,
Di Fiore
,
R. R.
,
Schulz
,
R. L.
, and
Clark
,
D. E.
, 1996, “
Microwave Processing of Al2O3–ZrO2 Composites
,”
Ceram. Eng. Sci. Proc.
0196-6219,
17
(
3
), pp.
147
154
.
37.
Clark
,
D. E.
, and
Sutton
,
W. H.
, 1996, “
Microwave Processing of Materials
,”
Annu. Rev. Mater. Sci.
0084-6600,
26
(
1
), pp.
299
331
.
38.
Sutton
,
W. H.
, 1989, “
Microwave Processing of Ceramic Materials
,”
Ceram. Bull.
0002-7812,
68
(
2
), pp.
376
386
.
39.
Datta
,
A. K.
, 1990, “
Heat and Mass Transfer in the Microwave Processing of Food
,”
Chem. Eng. Prog.
0360-7275,
86
, pp.
47
53
.
40.
Christiansen
,
D. E.
, and
Unruh
,
W. P.
, 1991, “
Use of a TM010 Microwave Cavity at 2.45 GHz for Aerosol and Filament Drying
,”
Ceram. Trans.
1042-1122,
21
, pp.
597
604
.
41.
Roddy
,
D.
, 1986,
Microwave Technology
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
42.
Van Arkel
,
A. E.
,
Flood
,
E. A.
, and
Bright
,
N. F. H.
, 1953, “
The Electrical Conductivity of Molten Oxides
,”
Can. J. Chem.
0008-4042,
31
, pp.
1009
1019
.
43.
Pozar
,
D. M.
, 1998,
Microwave Engineering
,
2nd ed.
,
Wiley
,
New York
.
44.
Homer
,
F.
, 1966, “
The Electrical Conductivity of Liquid Al2O3 (Molten Corundum and Ruby)
,”
J. Phys. Chem.
0022-3654,
70
(
3
), pp.
890
893
.
You do not currently have access to this content.