We have developed a nanofabricated resistance thermometer device to measure the thermal conductivity of graphene monolayers exfoliated onto silicon dioxide. The measurement results show that the thermal conductivity of the supported graphene is approximately 600W/mK at room temperature. While this value is lower than the reported basal plane values for graphite and suspended graphene because of phonon leakage across the graphene-support interface, it is still considerably higher than the values for common thin film electronic materials. Here, we present a detailed discussion of the design and fabrication of the measurement device. Analytical and numerical heat transfer solutions are developed to evaluate the accuracy and uncertainty of this method for thermal conductivity measurement of high-thermal conductivity ultrathin films.

1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
, 2004, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
0036-8075,
306
(
5696
), pp.
666
669
.
2.
Bolotin
,
K. I.
,
Sikes
,
K. J.
,
Jiang
,
Z.
,
Klima
,
M.
,
Fudenberg
,
G.
,
Hone
,
J.
,
Kim
,
P.
, and
Stormer
,
H. L.
, 2008, “
Ultrahigh Electron Mobility in Suspended Graphene
,”
Solid State Commun.
0038-1098,
146
(
9–10
), pp.
351
355
.
3.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
, 2008, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
0036-8075,
321
(
5887
), pp.
385
388
.
4.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
, 2008, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
1530-6984,
8
(
3
), pp.
902
907
.
5.
Cahill
,
D. G.
, and
Pohl
,
R. O.
, 1987, “
Thermal Conductivity of Amorphous Solids Above the Plateau
,”
Phys. Rev. B
0556-2805,
35
(
8
), pp.
4067
4073
.
6.
Hostetler
,
J. L.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 1997, “
Thin-Film Thermal Conductivity and Thickness Measurements Using Picosecond Ultrasounds
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
1
(
3
), pp.
237
244
.
7.
Cahill
,
D. G.
, 2004, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
0034-6748,
75
(
12
), pp.
5119
5122
.
8.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
0022-1481,
127
(
3
), pp.
315
322
.
9.
Ju
,
Y. S.
,
Kurabayashi
,
K.
, and
Goodson
,
K. E.
, 1999, “
Thermal Characterization of Anisotropic Thin Dielectric Films Using Harmonic Joule Heating
,”
Thin Solid Films
0040-6090,
339
(
1–2
), pp.
160
164
.
10.
Jain
,
A.
, and
Goodson
,
K. E.
, 2008, “
Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method
,”
ASME J. Heat Transfer
0022-1481,
130
(
10
), p.
102402
.
11.
Mavrokefalos
,
A.
,
Pettes
,
M. T.
,
Zhou
,
F.
, and
Shi
,
L.
, 2007, “
Four-Probe Measurements of the In-Plane Thermoelectric Properties of Nanofilms
,”
Rev. Sci. Instrum.
0034-6748,
78
(
3
), p.
034901
.
12.
Zink
,
B. L.
,
Revaz
,
B.
,
Cherry
,
J. J.
, and
Hellman
,
F.
, 2005, “
Measurement of Thermal Conductivity of Thin Films With a Si-N Membrane-Based Microcalorimeter
,”
Rev. Sci. Instrum.
0034-6748,
76
(
2
), p.
024901
.
13.
Nair
,
R. R.
,
Blake
,
P.
,
Grigorenko
,
A. N.
,
Novoselov
,
K. S.
,
Booth
,
T. J.
,
Stauber
,
T.
,
Peres
,
N. M. R.
, and
Geim
,
A. K.
, 2008, “
Fine Structure Constant Defines Visual Transparency of Graphene
,”
Science
0036-8075,
320
(
5881
), pp.
1308
.
14.
Faugeras
,
C.
,
Faugeras
,
B.
,
Orlita
,
M.
,
Potemski
,
M.
,
Nair
,
R. R.
, and
Geim
,
A. K.
, 2010, “
Thermal Conductivity of Graphene in Corbino Membrane Geometry
,”
ACS Nano
1936-0851,
4
(
4
), pp.
1889
1892
.
15.
Cai
,
W.
,
Moore
,
A. L.
,
Zhu
,
Y.
,
Li
,
X.
,
Chen
,
S.
,
Shi
,
L.
, and
Ruoff
,
R. S.
, 2010, “
Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
,”
Nano Lett.
1530-6984,
10
(
5
), pp.
1645
1651
.
16.
Klemens
,
P. G.
, 2001, “
Theory of Thermal Conduction in Thin Ceramic Films
,”
Int. J. Thermophys.
0195-928X,
22
(
1
), pp.
265
275
.
17.
Prasher
,
R.
, 2007, “
Thermal Conductance of Single-Walled Carbon Nanotube Embedded in an Elastic Half-Space
,”
Appl. Phys. Lett.
0003-6951,
90
(
14
), p.
143110
.
18.
Seol
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
, 2010, “
Two-Dimensional Phonon Transport in Supported Graphene
,”
Science
0036-8075,
328
(
5975
), pp.
213
216
.
19.
Blake
,
P.
,
Hill
,
E. W.
,
Castro Neto
,
A. H.
,
Novoselov
,
K. S.
,
Jiang
,
D.
,
Yang
,
R.
,
Booth
,
T. J.
, and
Geim
,
A. K.
, 2007, “
Making Graphene Visible
,”
Appl. Phys. Lett.
0003-6951,
91
(
6
), p.
063124
.
20.
Abergel
,
D. S. L.
,
Russell
,
A.
, and
Fal’ko
,
V. I.
, 2007, “
Visibility of Graphene Flakes on a Dielectric Substrate
,”
Appl. Phys. Lett.
0003-6951,
91
(
6
), p.
063125
.
21.
Ferrari
,
A. C.
, and
Robertson
,
J.
, 2000, “
Interpretation of Raman Spectra of Disordered and Amorphous Carbon
,”
Phys. Rev. B
0556-2805,
61
(
20
), pp.
14095
14107
.
22.
Incropera
,
F. P.
,
DeWitt
,
P. D.
,
Bergman
,
T. L.
, and
Lavine
,
A. L.
, 2007,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
23.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
, 2008, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
0034-6748,
79
(
11
), p.
114902
.
24.
Li
,
Q. W.
,
Liu
,
C. H.
, and
Fan
,
S. S.
, 2009, “
Thermal Boundary Resistances of Carbon Nanotubes in Contact With Metals and Polymers
,”
Nano Lett.
1530-6984,
9
(
11
), pp.
3805
3809
.
25.
Persson
,
A. I.
,
Koh
,
Y. K.
,
Cahill
,
D. G.
,
Samuelson
,
L.
, and
Linke
,
H.
, 2009, “
Thermal Conductance of InAs Nanowire Composites
,”
Nano Lett.
1530-6984,
9
(
12
), pp.
4484
4488
.
26.
Chen
,
Z.
,
Jang
,
W.
,
Bao
,
W.
,
Lau
,
C. N.
, and
Dames
,
C.
, 2009, “
Thermal Contact Resistance Between Graphene and Silicon Dioxide
,”
Appl. Phys. Lett.
0003-6951,
95
(
16
), p.
161910
.
27.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Saunders College Publishing
,
Fort Worth, TX
.
28.
Cahill
,
D. G.
, 1990, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
0034-6748,
61
(
2
), pp.
802
808
.
29.
Al-Jishi
,
R.
, and
Dresselhaus
,
G.
, 1982, “
Lattice-Dynamical Model for Graphite
,”
Phys. Rev. B
0556-2805,
26
(
8
), pp.
4514
4522
.
30.
Zhang
,
Q. G.
,
Cao
,
B. Y.
,
Zhang
,
X.
,
Fujii
,
M.
, and
Takahashi
,
K.
, 2006, “
Size Effects on the Thermal Conductivity of Polycrystalline Platinum Nanofilms
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
7937
7950
.
31.
Zhang
,
X.
,
Xie
,
H.
,
Fujii
,
M.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
, 2005, “
Thermal and Electrical Conductivity of a Suspended Platinum Nanofilm
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
171912
.
32.
Slack
,
G. A.
, 1962, “
Anisotropic Thermal Conductivity of Pyrolytic Graphite
,”
Phys. Rev.
0031-899X,
127
(
3
), pp.
694
701
.
33.
Nath
,
P.
, and
Chopra
,
K. L.
, 1974, “
Thermal Conductivity of Copper Films
,”
Thin Solid Films
0040-6090,
20
(
1
), pp.
53
62
.
34.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
0003-6951,
74
(
20
), pp.
3005
3007
.
You do not currently have access to this content.