An accurate and compact part-spectrum k-distribution database has been developed for the two most important radiating species N and O encountered in hypersonic nonequilibrium flows. The database allows users to calculate the desired full-spectrum k-distributions through look-up and interpolation, providing an efficient means to perform radiative transfer calculations. A detailed methodology of the k-distribution data generation is presented. An optimized Gauss quadrature scheme is implemented for reducing the size of the database. The accuracy of the database is determined by comparing part-spectrum emissivities with those obtained from line-by-line calculations. The application of the database to construct full-spectrum k-distributions at arbitrary gas states is discussed. Heat transfer results for the stagnation line of the Stardust vehicle are discussed and CPU-time studies are presented, demonstrating the accuracy and efficiency of the k-distribution database.

References

References
1.
Lacis
,
A. A.
, and
Oinas
,
V.
, “
A Description of the Correlated-k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.
,
96
(
D5
), pp.
9027
9063
, doi:10.1029/90JD01945 (1991).
2.
Modest
,
M. F.
, and
Zhang
,
H.
, 2002, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas–Particulate Mixtures
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
30
38
.
3.
Modest
,
M. F.
, 2003, “
Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated-k Versus Scaling Approximation
,”
J. Quant. Spectrosc. Radiat. Transf.
,
76
(
1
), pp.
69
83
.
4.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1992, “
Correlated-k and Fictitious Gas Methods for H2O Near 2.7 μm
,”
J. Quant. Spectrosc. Radiat. Transf.
,
48
, pp.
187
203
.
5.
Rivière
,
P.
,
Scutaru
,
D.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1994, “
A New c–k Data Base Suitable from 300 to 2500 K for Spectrally Correlated Radiative Transfer in CO2–H2O Transparent Gas Mixtures
,”
In Tenth International Heat Transfer Conference
,
Taylor & Francis
, pp.
129
134
.
6.
Zhang
,
H.
, and
Modest
,
M. F.
, 2002, “
A Multi-Scale Full-Spectrum Correlated-k Distribution for Radiative Heat Transfer in Inhomogeneous Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
(
2–5
), pp.
349
360
.
7.
Zhang
,
H.
, and
Modest
,
M. F.
, 2003, “
Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
125
(
3
), pp.
454
461
.
8.
Hermann
,
W.
, and
Schade
,
E.
, 1971, “
Radiative Energy Balance in Cylindrical Nitrogen Arcs
,”
J. Quant. Spectrosc. Radiat. Transf.
,
12
(
9
), pp.
1257
1282
.
9.
Bansal
,
A.
,
Modest
,
M. F.
, and
Levin
,
D. A.
, 2010, “
Multigroup Correlated-k Distribution Method for Nonequilibrium Atomic Radiation
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
638
646
.
10.
Modest
,
M. F.
, and
Riazzi
,
R. J.
, 2005, “
Assembly of Full-Spectrum k-Distributions from a Narrow-Band Database; Effects of Mixing Gases, Gases and Nongray Absorbing Particles, and Mixtures with Nongray Scatterers in Nongray Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
90
(
2
), pp.
169
189
.
11.
Wang
,
A.
, and
Modest
,
M. F.
, 2005, “
High-accuracy, Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide
,”
J. Quant. Spectrosc. Radiat. Transf.
,
93
, pp.
245
261
.
12.
Bansal
,
A.
,
Modest
,
M. F.
, and
Levin
,
D. A.
, 2009, “
Narrow-Band k-Distribution Database for Atomic Radiation in Hypersonic Nonequilibrium Flows
,” ASME Paper No. HT2009-88120.
13.
Ralchenko
,
Yu.
,
Kramida
,
A. E.
, and
Reader
,
J.
, 2010,
NIST Atomic Spectra Database, Version 4
,
National Institute of Standards and Technology (NIST), Physics Lab
, available from http://www.nist.gov/pml/data/asd.cfm.
14.
Whiting
,
E.
,
Park
,
C.
,
Liu
,
Y.
,
Arnold
,
J.
, and
Paterson
,
J.
, 1996, “
NEQAIR96, Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User’s Manual
,”
Nasa reference publication 1389
,
NASA/Ames Research Center, Moffett Field
,
CA
.
15.
Sohn
,
I.
,
Bansal
,
A.
,
Levin
,
D. A.
, and
Modest
,
M. F.
, 2010, “
Advanced Radiation Calculations of Hypersonic Reentry Flows Using Efficient Databasing Schemes
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
623
637
.
16.
Park
,
C.
, 2004, “
Stagnation-Point Radiation for Apollo 4
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
349
357
.
17.
McCorkle
,
E. R.
,
Bose
,
D.
, and
Hash
,
D. B.
, 2009, “
Improved Modeling of Shock Layer Radiation in Air
,”
AIAA Paper No. 2009-1028.
18.
Chauveau
,
S.
,
Perrin
,
M. Y.
,
Rivière
,
P.
, and
Soufiani
,
A.
, 2002, “
Contributions of Diatomic Molecular Electronic Systems to Heated Air Radiation
,”
J. Quant. Spectrosc. Radiat. Transf.
,
72
, pp.
503
530
.
19.
Chauveau
,
S.
,
Deron
,
C.
,
Perrin
,
M. Y.
,
Riviere
,
P.
, and
Soufiani
,
A.
, 2003, “
Radiative Transfer in LTE Air Plasmas for Temperatures up to 15,000 K
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
, pp.
113
130
.
20.
Johnston
,
C. O.
, 2006, “
Nonequilibrium Shock-Layer Radiative Heating For Earth and Titan Entry
,”
Ph.D. thesis
,
Department of Aerospace Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA
.
21.
Park
,
C.
, 1990,
Nonequilibrium Hypersonic Aerothermodynamics
,
Wiley
,
New York
.
22.
Hartung-Chambers
,
L.
, 1994, “
Predicting Radiative Heat Transfer in Thermochemical Nonequilibrium Flow Fields
,”
NASA Technical Memorandum 4564
.
23.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
2nd ed.
,
Academic
,
New York
.
24.
Feldick
,
A. M.
,
Modest
,
M. F.
, and
Levin
,
D. A.
, “
Closely Coupled Flowfield–Radiation Interactions During Hypersonic Reentry
,”
J. Thermophys. Heat Transfer
(in press).
You do not currently have access to this content.