In this work, the natural convection heat transfer of Cu-gallium nanofluid in a differentially heated enclosure is investigated. A single-phase model is employed with constant or temperature-dependent properties of the fluid. The results are shown over a wide range of Grashof numbers, volume fractions of nanoparticles, and aspect ratios. The Nusselt number is demonstrated to be sensitive to the aspect ratio. It is found that the Nusselt number is more sensitive to thermal conductivity than viscosity at a low velocity (especially for a low aspect ratio and a low Grashof number), however, it is more sensitive to the viscosity than the thermal conductivity at a high velocity (high aspect ratio and high Grashof number). In addition, the evolution of velocity vectors, isotherms, and Nusselt number for a small aspect ratio is investigated.

References

References
1.
Holtzman
,
G. A.
,
Hill
,
R. W.
, and
Ball
,
K. S.
, 2000, “
Laminar Natural Convection in Isosceles Triangular Enclosures Heated From Below and Symmetrically Cooled From Above
,”
ASME J. Heat Transfer
,
122
, pp.
485
491
.
2.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
151
155
.
3.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.
4.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
, p.
042412
.
5.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.
6.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
588
595
.
7.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
,
128
, pp.
465
477
.
8.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
, 2007, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
,
129
, pp.
298
307
.
9.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
, pp.
617
623
.
10.
Wang
,
L.
, and
Wei
,
X.
, 2009, “
Nanofluids: Synthesis, Heat Conduction, and Extension
,”
ASME J. Heat Transfer
,
131
, p.
033102
.
11.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2009, “
Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
,
131
, p.
043204
.
12.
Nnanna
,
A. G. A.
, 2007, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
,
129
, pp.
697
704
.
13.
Milanova
,
D.
, and
Kumar
,
R.
, 2008, “
Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,”
ASME J. Heat Transfer
,
130
, p.
042401
.
14.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
,
130
, p.
044501
.
15.
Shukla
,
R. K.
, and
Dhir
,
V. K.
, 2008, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
130
, p.
042406
.
16.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
,
131
,
112401
.
17.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
, pp.
240
250
.
18.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2010, “
Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)
,”
Adv. Mech. Eng.
, 2010,
742739
.
19.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
, 2009, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid Filled Enclosure
,”
Eur. J. Mech. B/Fluids
,
28
, pp.
630
640
.
20.
Chang
,
B. H.
,
Mills
,
A. F.
, and
Hernandez
,
E.
, 2008, “
Natural Convection of Microparticle Suspensions in Thin Enclosures
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1332
1341
.
21.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, 2010, “
The Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
29
, pp.
217
223
.
22.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
, 2010, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures Filled With a CuO-EG-Water Nanofluid
,”
Int. J. Therm. Sci.
,
49
, pp.
2339
2352
.
23.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
, 2007, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4003
4010
.
24.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
, 2008, “
Numerical Simulation of Natural Convection of Nanofluidin a Square Enclosure: Effects Due to Uncertainties of Viscosityand Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4506
4516
.
25.
Esfahani
,
J. A.
, and
Bordbar
,
V.
, 2011, “
Double Diffusive Natural Convection Heat Transfer Enhancement in a Square Enclosure Using Nanofluids
,”
ASME J. Nanotechnol. Eng. Med.
,
2
, p.
021002
.
26.
Kargar
,
A.
,
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
, 2011, “
An Artificial Neural Network Approach to Cooling Analysis of Electronic Components in Enclosures Filled With Nanofluids
,”
ASME J. Electron. Packag.
,
133
, p.
011010
.
27.
Wu
,
H. W.
, and
Wang
,
R. H.
, 2011, “
Mixed Convective Heat Transfer Past a Heated Square Porous Cylinder in a Horizontal Channel With Varying Channel Height
,”
ASME J. Heat Transfer
,
133
, p.
022503
.
28.
Ma
,
K. Q.
, and
Liu
,
J.
, 2007, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
, pp.
252
256
.
29.
Xu
,
B.
, and
Li
,
B. Q.
, 2005, “
Hot-Film Measurement of Temperature Gradient Induced Natural Convection in Liquid Gallium
,”
Exp. Therm. Fluid Sci.
,
29
, pp.
697
704
.
30.
Pan
,
B.
,
Shang
,
D. Y.
,
Li
,
B. Q.
, and
Groh
,
H. C. D.
, 2002, “
Magnetic Filed Effects on G-Jitter Induced Flow and Solute Transport
,”
Int. J. Heat Mass Transfer
,
45
, pp.
125
144
.
31.
Alexander
,
J. I. D.
,
Amiroudine
,
S.
,
Ouazzani
,
J.
, and
Rosenberger
,
F.
, 1991, “
Analysis of the Low Gravity Tolerance of Bridgman-Stockbarger Crystal Growth II: Transient and Periodic Accelerations
,”
J. Cryst. Growth
,
113
, pp.
21
38
.
32.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3707
.
33.
Maliga
,
S. E. B.
,
Palm
,
S. M.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
, 2005, “
Heat Transfer Enhancement Using Nanofluid in Forced Convection Flow
,”
Int. J. Heat Fluid Flow
,
26
, pp.
530
546
.
34.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.
35.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
, pp.
571
581
.
36.
Drew
,
D. A.
, and
Passman
,
S. L.
, 1999,
Theory of Multicomponent Fluids
,
Springer
,
Berlin
.
37.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticles-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.
38.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
, pp.
187
191
.
39.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
, pp.
167
171
.
40.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
, 2007, “
Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
,
27
, pp.
240
249
.
41.
Tzou
,
D. Y.
, 2008, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2967
2979
.
42.
Gosselin
,
L.
, and
da Silva
,
A.
, 2004, “
Combined Heat Transfer and Power Dissipation Optimization of Nanofluid Flow
,”
Appl. Phys. Lett.
,
85
, pp.
4160
4162
.
You do not currently have access to this content.