There are very few detailed experimental investigations about the heat transfer behavior of nanofluids in microchannel. The heat transfer behavior of nanofluids in microchannel is investigated. Two microchannels with hydraulic diameters 218 and 303 μm are fabricated by wet etching process on silicon wafer. An experimental set-up having provision of flow in the channel and temperature measurement along with bottom wall temperature is built-up. Alumina nanofluids with concentrations of 0.25 vol. %, 0.5 vol. %, and 1 vol. % with 45 nm are prepared, stabilized, and characterized by standard methods. The thermal conductivity and viscosity used in the study were measured and analyzed. The base fluids used are water and ethylene glycol. The effect of volume fraction, channel size, particle size, and base fluids are presented and analyzed. An important phenomenon of dispersion is observed. In addition, numerical modeling is carried out by using discrete phase approach. Shear induced particle migration is identified to be the reason of difference for dispersion of particles. The Brownian and thermophoretic forces are responsible for major changes in particle concentration and their movement. Also, it was found that better heat transfer characteristics can be obtained by higher concentration of nanofluids and by low viscous base fluids.

References

References
1.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
Developments and Applications of Non-Newtonian Flows
,”
D. A.
Singer
,
H. P.
Wang
, eds., FED231,
ASME
,
New York
.
2.
Pak
,
B.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particle
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.
3.
Eastman
,
J. A.
,
S. U. S.
Choi
,
S.
Li
,
G.
Soyez
,
L. J.
Thompson
and
R. J.
DiMelfi
, 1998, “
Novel Thermal Properties of Nanostructured Materials
,”
J. Metastable Nanocryst. Mater.
,
2
, pp.
629
634
.
4.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
J. Heat Transfer
,
121
, pp.
280
289
.
5.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer
,
125
, pp.
567
574
.
6.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008, “
Thermophysical and Electrokinetic Properties of Nanofluids—A Critical Review
,”
Appl. Thermal Eng.
,
28
(
17–18
), pp.
2109
2125
.
7.
Sezer Özerinç
,
S.
,
Kakaç
,
S.
, and
Yazıcıoğlu
,
A. G.
, 2010, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.
8.
Das
,
S. K.
, and
Choi
,
S. U. S.
, 2009, “
Heat Transfer in Nanofluids
,”
Adv. Heat Transfer
,
41
, pp.
81
191
.
9.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
J. Heat Transfer
,
125
, pp.
151
156
.
10.
Wen
,
D.
, and
Ding
,
Y.
, 2005, “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
,
1
, pp.
183
189
.
11.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
, 2007, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Mass Transfer
,
28
, pp.
203
210
.
12.
Wang
,
X.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Thermal Sci.
,
46
, pp.
1
19
.
13.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
, pp.
797
817
.
14.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
, 2009, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3187
3196
.
15.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
16.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
17.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
, 2005, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5580
5601
.
18.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Thermal Sci.
,
43
, pp.
631
651
.
19.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2005, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2652
2661
.
20.
Chein
,
R.
, and
Huang
,
G.
, 2005, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Thermal Eng.
25
, pp.
3104
3114
.
21.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
452
463
.
22.
Jung
,
J.-Y.
,
Oh
,
H. S.
, and
Kwak
,
H. Y.
, 2009, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
, pp.
466
472
.
23.
Ho
,
C. J.
,
Wei
,
L. C.
, and
Li
,
Z. W.
, 2009, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Thermal Eng.
30
, pp.
96
103
.
24.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
25.
Anoop
,
K. B.
,
Kabelac
,
S.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2009, “
Rheological and Flow Characteristics of Nanofluids: Influence of Electroviscous Effects and Particle Agglomeration
,”
J. Appl. Phys.
,
106
, p.
034909
.
26.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2009, “
A Cell Model Approach for Thermal Conductivity of Nanofluids
,”
J. Nanopart. Res.
,
10
, pp.
87
97
.
27.
Patel
,
H. E.
, 2007, “
Experimental and Theoretical Investigation on Thermal Conductivity Enhancement of Nanofluids
,” PhD thesis, Indian Institute of Technology Madras, India.
28.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2010, “
Experimental and Numerical Investigation Into the Hydrodynamics of Nanofluids in Microchannels
,” submitted.
29.
FLUENT 6.3,
Users’ guide
, ANSYS FLUENT.
30.
Wen
,
D.
,
Zhang
,
A.
, and
Yurong
,
H.
, 2009, “
Flow and Migration of Nanoparticle in a Single Channel
,”
Heat Mass Transfer
,
45
, pp.
1061
1067
.
31.
Li
,
A.
, and
Ahmadi
,
G.
, 1992, “
Dispersion and Deposition of Spherical Particles From Point Sources in Aturbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
, pp.
209
226
.
32.
Talbot
,
L.
, 1980, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
, pp.
737
758
.
33.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
, pp.
385
400
.
34.
Wen
,
D.
, and
Ding
,
Y.
, 2005, “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
1
, pp.
183
189
.
You do not currently have access to this content.