The unsteady natural convection boundary layer adjacent to an instantaneously heated inclined plate is investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer following instantaneous heating may be classified into three distinct stages including a start-up stage, a transitional stage, and a steady state stage, which can be clearly identified in the analytical and numerical results. Major scaling relations of the velocity and thicknesses and the flow development time of the natural convection boundary layer are obtained using triple-layer integral solutions and verified by direct numerical simulations over a wide range of flow parameters.

References

References
1.
Ganesan
,
P.
, and
Palani
,
G.
, 2003, “
Natural Convection Effects on Impulsively Started Inclined Plate With Heat and Mass Transfer
,”
Heat Mass Transfer
,
39
, pp.
277
283
.
2.
Ganesan
,
P.
, and
Palani
,
G.
, 2004, “
Finite Difference Analysis of Unsteady Natural Convection MHD Flow Past an Inclined Plate With Variable Surface Heat and Mass Flux
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4449
4457
.
3.
Said
,
S. A. M.
,
Habib
,
M. A.
,
Badr
,
H. M.
, and
Anwar
,
S.
, 2005, “
Turbulent Natural Convection Between Inclined Isothermal Plates
,”
Comput. Fluids
,
34
, pp.
1025
1039
.
4.
Sparrow
,
E. M.
, and
Husar
,
R. B.
, 1969, “
Longitudinal Vortices in Natural Convection Flow on Inclined Plates
,”
J. Fluid. Mech
.,
37
, pp.
251
255
.
5.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
3rd ed.
,
Wiley
,
Hoboken
.
6.
Patterson
,
J. C.
, and
Imberger
,
J.
, 1980, “
Unsteady Natural Convection in a Rectangular Cavity
,”
J. Fluid Mech.
,
100
, pp.
65
86
.
7.
Armfield
,
S. W.
,
Patterson
,
J. C.
, and
Lin
,
W.
, 2007, “
Scaling Investigation of the Natural Convection Boundary Layer on an Evenly Heated Plate
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1592
1602
.
8.
Lin
,
W.
, and
Armfield
,
S. W.
, 1999, “
Direct Simulation of Natural Convection Cooling in a Vertical Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
42
, pp.
4117
4130
.
9.
Lin
,
L.
, and
Armfield
,
S. W.
, 2001, “
Natural Convection Cooling of Rectangular and Cylindrical Containers
,”
Int. J. Heat Fluid Flow
,
22
, pp.
72
81
.
10.
Lin
,
W.
, and
Armfield
,
S. W.
, 2004, “
Long-Term Behavior of Cooling Fluid in a Rectangular Container
,”
Phys. Rev. E.
,
69
, pp.
05631
.
11.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
, 2011, “
Scaling of Natural Convection of an Inclined Flat Plate: Sudden Cooling Condition
,”
ASME J. Heat Transfer
,
133
, p.
041503
.
12.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
, 2010, “
Natural Convection Boundary Layer Adjacent to an Inclined Flat Plate Subject to Sudden and Ramp Heating
,”
Int. J. Therm. Sci.
,
49
, pp.
1600
1612
.
13.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
, 2010, “
Natural Convection in Attic-Shaped Spaces Subject to Sudden and Ramp Heating Boundary Conditions
,”
Heat Mass Transfer
,
46
, pp.
621
638
.
14.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
, 2010, “
Natural Convection and Heat Transfer in Attics Subject to Periodic Thermal Forcing
,”
Int. J. Therm. Sci.
,
49
, pp.
1899
1910
.
15.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
, 2010, “
Natural Convection in Attics Subject to Instantaneous and Ramp Cooling Boundary Conditions
,”
Energy Build.
,
42
, pp.
1192
1204
.
16.
Lei
,
C.
, and
Patterson
,
J. C.
, 2002, “
Unsteady Natural Convection in a Triangular Enclosure Induced by Absorption of Radiation
,”
J. Fluid Mech.
,
460
, pp.
181
209
.
17.
Lei
,
C.
, and
Patterson
,
J. C.
, 2005, “
Unsteady Natural Convection in a Triangular Enclosure Induced by Surface Cooling
,”
Int. J. Heat Fluid Flow
,
26
, pp.
307
321
.
18.
Mao
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
, 2010, “
Unsteady Near-Shore Natural Convection Induced by Surface Cooling
,”
J. Fluid Mech.
,
642
, pp.
213
233
.
19.
Mao
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
, 2009, “
Unsteady Natural Convection in a Triangular Enclosure Induced by Absorption of Radiation
,”
J. Fluid Mech.
,
622
, pp.
75
102
.
20.
Poulikakos
,
D.
, and
Bejan
,
A.
, 1983, “
The Fluid Dynamics of an Attic Space
,”
J. Fluid Mech.
,
131
, pp.
251
269
.
21.
Lin
,
W.
,
Armfield
,
S. W.
,
Patterson
,
J. C.
, and
Lei
,
C.
, 2009, “
Prandtl Number Scaling of Unsteady Natural Convection Boundary Layers of Pr > 1 Fluids Under Isothermal Heating
,”
Phys. Rev. E
,
79
, p.
066313
.
22.
Bednarz
,
T. P.
,
Lin
,
W.
,
Patterson
,
J. C.
,
Lei
,
C.
, and
Armfield
,
S. W.
, 2009, “
Scaling for Unsteady Thermo-Magnetic Convection Boundary Layer of Paramagnetic Fluids of Pr > 1 in Micro-Gravity Conditions
,”
Int. J. Heat Fluid Flow
,
30
, pp.
1157
1170
.
23.
Patterson
,
J. C.
,
Lei
,
C.
,
Armfield
,
S. W.
, and
Lin
,
W.
, 2009, “
Scaling of Unsteady Natural Convection Boundary Layers With a Non-Instantaneous Initiation
,”
Int. J. Therm. Sci.
,
48
, pp.
1843
1852
.
24.
Leonard
,
B. P.
, and
Mokhtari
,
S.
, 1990,
“ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow,”
NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Centre, Cleveland, OH.
25.
Patterson
,
J. C.
, and
Armfield
,
S. W.
, 1990, “
Transient Features of Natural Convections in a Cavity
,”
J. Fluid Mech.
,
219
, pp.
469
497
.
You do not currently have access to this content.