In the present paper, turbulent heat transfer characteristics of submerged slot jets impinging on a moving surface at a constant temperature up to a Reynolds number of 50,000 have been studied. The turbulent flow field was resolved using the realizable k-ɛ model due to Shi et al. [1995, “A New k-ɛ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation,” Comput. Fluids, 24, pp. 227–238] after rigorously establishing the adequacy of the model by comparison with large-eddy simulation data. A periodic element from a jet-bank configuration was chosen in the direction of the surface movement. The distribution of heat transfer on impinging surface is found to be significantly affected by the plate motion. However, the mean velocity distribution along vertical direction in the stagnation region is not affected by the plate motion. With increasing surface motion, the initial symmetric distribution changes to an inclined-S type pattern in the direction of the surface movement up to a certain level of surface velocity and the average heat transfer reduces. When the surface motion crosses this level, the net heat transfer starts increasing. The amount of heat transfer was found to be linked with the level of turbulent kinetic energy close to the impingement surface. The surface velocity at which the heat transfer reaches the value corresponding to the fixed surface value increases with increasing Reynolds number.

References

References
1.
Zumbrunnen
,
D. A.
, 1991, “
Convective Heat and Mass Transfer in the Stagnation Region of a Laminar Planar Jet Impinging on a Moving Surface
,”
ASME J. Heat Transfer
,
113
, pp.
563
570
.
2.
Chen
,
J.
,
Wang
,
T.
, and
Zumbrunnen
,
D. A.
, 1994, “
Numerical Analysis of Convective Heat Transfer From a Moving Plate Cooled by an Array of Submerged Planar Jets
,”
Numer. Heat Transfer, Part A
,
26
, pp.
141
160
.
3.
Huang
,
P. G.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, 1984, “
Numerical Prediction of Fluid Flow and Heat Transfer Under a Turbulent Impinging Slot Jet With Surface Motion and Crossflow
,” ASME Paper 84-WA/HT-33.
4.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, 1989, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
,
2
, pp.
157
197
.
5.
Yang
,
Y. T.
, and
Zhao
,
T. P.
, 1999, “
Numerical Studies of Three Turbulent Slot Jets With and Without Moving Surface
,”
Acta Mech.
,
136
, pp.
17
27
.
6.
Chattopadhyay
,
H.
,
Biswas
,
G.
, and
Mitra
,
N. K.
, 2002, “
Heat Transfer From a Moving Surface Due to Impinging Jets
,”
ASME J. Heat Transfer
,
124
, pp.
433
440
.
7.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
, 2002, “
Simulation of Laminar Slot Jets Impinging on a Moving Surface
,”
ASME J. Heat Transfer
,
124
, pp.
1049
1055
.
8.
Chattopadhyay
,
H.
, 2006, “
Effect of Surface Motion on Transport Processes Due to Circular Impinging Jets—A Numerical Study
,”
Drying Technol.
,
24
, pp.
1347
1351
.
9.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
, 2001, “
Numerical Investigations of Heat Transfer Over a Moving Surface Due to Impinging Knife-Jets
,”
Numer. Heat Transfer, Part A
,
39
, pp.
531
549
.
10.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
, 2003, “
Turbulent Flow and Heat Transfer From a Slot Jet Impinging on a Moving Plate
,”
Int. J Heat Fluid Flow
,
24
, pp.
685
697
.
11.
Martin
,
H.
, 1990, “
Impinging Jets
,”
Handbook of Heat Exchanger Design
,
G. F.
Hewitt
, ed.,
Hemisphere
,
Washington, DC
, pp.
2.5.6.1
2.5.6.10
.
12.
Sharif
,
M. A. R.
, and
Banerjee
,
A.
, 2009, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
, pp.
532
540
.
13.
Senter
,
J.
, and
Solliec
,
C.
, 2007, “
Flow Field Analysis of a Turbulent Slot Air Jet Impinging on a Moving Flat Surface
,”
Int. J. Heat Fluid Flow
,
28
, pp.
708
719
.
14.
Gradeck
,
M.
,
Kouachi
,
A.
,
Dani
,
A.
,
Arnoult
,
D.
, and
Borean
,
J. L.
, 2006, “
Experimental and Numerical Study of the Hydraulic Jump of an Impinging Jet on a Moving Surface
,”
Exp. Thermal Fluid Sci.
,
30
, pp.
193
201
.
15.
Gradeck
,
M.
,
Kouachib
,
A.
, Lebouch
éa
,
M.
,
Vollea
,
F.
,
Mailleta
,
D.
, and
Boreanb
,
J. L.
, 2009, “
Boiling Curves in Relation to Quenching of a High Temperature Moving Surface With Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1094
1104
.
16.
Aldabbagh
,
L. B. Y.
, and
Mohamad
,
A. A.
, 2009, “
A Three-Dimensional Numerical Simulation of Impinging Jet Arrays on a Moving Plate
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4894
4900
.
17.
Benim
,
A. C.
,
Ozkan
,
K.
,
Cagan
,
M.
, and
Gunes
,
D.
, 2007, “
Computational Investigations of Turbulent Jets Impinging onto Rotating Disk
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
, pp.
284
301
.
18.
Fluent Inc.
, 2002,
Manual FLUENT 6.0
, Lebanon.
19.
Shi
,
T.
-H.,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
.,
J.
, 1995, “
A New k-ɛ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation
,”
Comput. Fluids
,
24
, pp.
227
238
.
20.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
B. E.
, 1993, “
Impinging Jet Studies for Turbulence Model Assessment—II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2675
2684
.
21.
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A. S.
, 1995, “
Comparative Evaluation of Different Turbulence Models for Confined Impinging and Opposing Jet Flows
,”
Numer. Heat Transfer, Part A
,
28
, pp.
647
666
.
22.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Budair
,
M. O.
, 1999, “
Gas Jet Impingement on a Surface Having a Limited Constant Heat Flux Area: Various Turbulence Models
,”
Numer. Heat Transfer, Part A
,
36
, pp.
171
200
.
23.
Chattopadhyay
,
H.
, 2007, “
Impinging Heat Transfer Due to a Turbulent Annular Jet
,”
Int. J. Transp. Phenom.
,
9
, pp.
287
296
.
24.
Shi
,
Y.
,
Ray
,
M. B.
, and
Mujumdar
,
A. S.
, 2002, “
Effects of Prandtl Number on Impinging Jet Heat Transfer Under a Semi-Confined Turbulent Slot Jet
,”
Int. Commun. Heat Mass Transfer
,
29
, pp.
929
938
.
25.
Biswas
,
G.
, and
Chattopadhyay
,
H.
, 1992, “
Heat Transfer in a Channel With Built-In Wing Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
35
, pp.
803
814
.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
27.
Polat
,
S.
, and
Douglas
,
W. J. M.
, 2004, “
Heat Transfer Under Multiple Slot Jets Impinging on a Permeable Moving Surface
,”
AIChE J.
,
36
, pp.
1370
1378
.
You do not currently have access to this content.