In this study, solidification process inside a water filled rectangular cavity is numerically investigated. The mathematical model is validated by comparing the current numerical predictions with the available analytical, numerical, and experimental results for three different test cases: one-dimensional conduction dominated solidification, natural convection in rectangular cavity, and natural convection dominated solidification in rectangular cavity. For all three cases, some good agreements are achieved in terms of isotherms, interface positions, and streamlines. After validation, time-wise ice formations are represented, and comparisons are made between bare and finned wall cases. In addition to these, further analyses are carried out by neglecting the buoyancy forces to introduce the differences between natural convection dominated and conduction dominated models. The results emphasize that natural convection has a critical effect in actual phase change processes.

References

References
1.
Dincer
,
I.
, and
Rosen
,
M. A.
, 2002,
Thermal Energy Storage: Systems and Applications
,
John Wiley & Sons
,
London
.
2.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
, 2003, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
, pp.
251
283
.
3.
Rieger
,
H.
,
Projahn
,
U.
, and
Beer
,
H.
, 1982, “
Analysis of the Heat Transport Mechanisms During Melting Around a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
25
, pp.
137
147
.
4.
Ho
,
C. J.
, and
Chen
,
S.
, 1986, “
Numerical Simulation of Melting of Ice Around a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
29
, pp.
1359
1369
.
5.
Erek
,
A.
, 1999, “Phase Change Around Finned Horizontal Cylinder: A Conjugate Problem,” Ph.D. thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir, Turkey.
6.
Erek
,
A.
,
Ilken
,
Z.
, and
Acar
,
M. A.
, 2005, “
Experimental and Numerical Investigation of Thermal Energy Storage With a Finned Tube
,”
Int. J. Energy Res.
,
29
, pp.
283
301
.
7.
Ermis
,
K.
,
Erek
,
A.
, and
Dincer
,
I.
, 2007, “
Heat Transfer Analysis of Phase Change Process in a Finned–Tube Thermal Energy Storage System Using Artificial Neural Network
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3163
3175
.
8.
Tan
,
F. L.
,
Hosseinizadeh
,
S. F.
,
Khodadadi
,
J. M.
, and
Fan
,
L. W.
, 2009, “
Experimental and Computational Study of Constrained Melting of Phase Change Materials (PCM) Inside a Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3464
3472
.
9.
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
, 1998, “
Flow and Heat Transfer in Convection–Dominated Melting in a Rectangular Cavity Heated From Below
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2573
2580
.
10.
Shyy
,
W.
, and
Chen
,
M. H.
, 1990, “
Steady-State Natural Convection With Phase Change
,”
Int. J. Heat Mass Transfer
,
33
, pp.
2545
2563
.
11.
Seybert
,
C. D.
, and
Evans
,
J. W.
, 2005, “
PIV Measurements of Velocity of Water in the Presence of Ice and Comparison With Calculated Values
,”
Int. J. Heat Mass Transfer
,
48
, pp.
67
73
.
12.
Sugawara
,
M.
, and
Beer
,
H.
, 2009, “
Numerical Analysis for Freezing/Melting Around Vertically Arranged Four Cylinders
,”
Heat Mass Transfer
,
45
, pp.
1223
1231
.
13.
Pinelli
,
M.
, and
Piva
,
S.
, 2003, “
Solid/Liquid Phase Change in Presence of Natural Convection: A Thermal Energy Storage Case Study
,”
ASME J. Energy Resour. Technol.
,
125
, pp.
190
198
.
14.
Sasaguchi
,
K.
,
Kusano
,
K.
, and
Viskanta
,
R.
, 1997, “
A Numerical Analysis of Solid−Liquid Phase Change Heat Transfer Around Single and Two Horizontal, Vertically Spaced Cylinders in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
40
, pp.
1343
1354
.
15.
Shih
,
Y. C.
, and
Chou
,
H. L.
, 2005, “
Numerical Study of Solidification Around Staggered Cylinders in a Fixed Space
,”
Numer. Heat Transfer, Part A
,
48
, pp.
239
260
.
16.
Braga
,
S. L.
, and
Viskanta
,
R.
, 1992, “
Transient Natural Convection of Water Near its Density Extremum in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
35
, pp.
861
875
.
17.
McDonough
,
M. W.
, and
Faghri
,
A.
, 1994, “
Experimental and Numerical Analyses of the Natural Convection of Water Through its Density Maximum in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
37
, pp.
783
801
.
18.
Lin
,
D. S.
, and
Nansteel
,
M. W.
, 1987, “
Natural Convection Heat Transfer in a Square Enclosure Containing Water Near its Density Maximum
,”
Int. J. Heat Mass Transfer
,
30
, pp.
2319
2329
.
19.
Tong
,
W.
, and
Koster
,
J. N.
, 1994, “
Density Inversion Effect on Transient Natural Convection in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
37
, pp.
927
938
.
20.
Kwak
,
H. S.
,
Kuwuhara
,
K.
, and
Hyun
,
J.
, 1998, “
Convective Cool-Down of a Contained Fluid Through its Maximum Density Temperature
,”
Int. J. Heat Mass Transfer
,
41
, pp.
323
333
.
21.
Braga
,
S. L.
, and
Viskanta
,
R.
, 1992, “
Effect of Density Extremum on the Solidification of Water on a Vertical Wall of a Rectangular Cavity
,”
Experimental Thermal Fluid Sci.
,
5
, pp.
703
713
.
22.
Scanlon
,
T. J.
, and
Stickland
,
M. T.
, 2004, “
A Numerical Analysis of Buoyancy-Driven Melting and Freezing
,”
Int. J. Heat Mass Transfer
,
47
, pp.
429
436
.
23.
Cao
,
Y.
, and
Faghri
,
A.
, 1990, “
A Numerical Analysis of Phase Change Problems Including Natural Convection
,”
ASME J. Heat Transfer
,
112
, pp.
812
816
.
24.
fluent Inc., 2006 fluent version 6.3, User’s Guide, www.fluent.com.
25.
Wang
,
S.
,
Faghri
,
A.
, and
Bergman
,
T. L.
, 2010, “
A Comprehensive Numerical Model for Melting With Natural Convection
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1986
2000
.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
27.
Ozisik
,
M. N.
, 1980,
Heat Conduction
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.