Macroscale thermal models have been developed for biological tissues either by the mixture theory of continuum mechanics or by the porous-media theory. The former uses scaling-down from the global scale; the latter applies scaling-up from the microscale by the volume averaging. The used constitutive relations for heat flux density vector include the Fourier law, the Cattaneo–Vernotte (Cattaneo, C., 1958, “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation,” Compt. Rend., 247, pp. 431–433; Vernotte, P., 1958, “Les Paradoxes de la Théorie Continue de I’equation de la Chaleur,” Compt. Rend., 246, pp. 3154–3155) theory, and the dual-phase-lagging theory. The developed models contain, for example, the Pennes (1948, “Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm,” J. Appl. Physiol., 1, pp. 93–122), Wulff (1974, “The Energy Conservation Equation for Living Tissues,” IEEE Trans. Biomed. Eng., BME-21, pp. 494–495), Klinger (1974, “Heat Transfer in Perfused Tissue I: General Theory,” Bull. Math. Biol., 36, pp. 403–415), and Chen and Holmes (1980, “Microvascular Contributions in Tissue Heat Transfer,” Ann. N.Y. Acad. Sci., 335, pp. 137–150), thermal wave bioheat, dual-phase-lagging (DPL) bioheat, two-energy-equations, blood DPL bioheat, and tissue DPL bioheat models. We analyze the methodologies involved in these two approaches, the used constitutive theories for heat flux density vector and the developed models. The analysis shows the simplicity of the mixture theory approach and the powerful capacity of the porous-media approach for effectively developing accurate macroscale thermal models for biological tissues. Future research is in great demand to materialize the promising potential of the porous-media approach by developing a rigorous closure theory. The heterogeneous and nonisotropic nature of biological tissue yields normally a strong noninstantaneous response between heat flux and temperature gradient in nonequilibrium heat transport. Both blood and tissue macroscale temperatures satisfy the DPL-type energy equations with the same values of the phase lags of heat flux and temperature gradient that can be computed in terms of blood and tissue properties, blood-tissue interfacial convective heat transfer coefficient, and blood perfusion rate. The blood-tissue interaction leads to very sophisticated effect of the interfacial convective heat transfer, the blood velocity, the perfusion, and the metabolic reaction on blood and tissue macroscale temperature fields such as the spreading of tissue metabolic heating effect into the blood DPL bioheat equation and the appearance of the convection term in the tissue DPL bioheat equation due to the blood velocity.

1.
Cho
,
Y. I.
, ed., 1992,
Bioengineering Heat Transfer
(
Advances in Heat Transfer Series
No. 22),
Academic
,
London
.
2.
Xu
,
F.
,
Lu
,
T. J.
,
Seffen
,
K. A.
, and
Ng
,
E. Y. K.
, 2009, “
Mathematical Modeling of Skin Bioheat Transfer
,”
Appl. Mech. Rev.
0003-6900,
62
, p.
050801
.
3.
Vadasz
,
P.
, ed., 2008,
Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microelectronics to Nanotechnology
(
Theory and Applications of Transport in Porous Media Series
No. 22),
Springer-Verlag
,
Berlin
.
4.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 2008, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3190
3199
.
5.
Khaled
,
A. R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
6.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Wei
,
X. H.
, 2008, “
Multiscale Theorems
,”
Adv. Chem. Eng.
0065-2377,
34
, pp.
175
468
.
7.
Auriault
,
J. L.
, 1991, “
Heterogeneous Medium: Is an Equivalent Macroscopic Description Possible?
,”
Int. J. Eng. Sci.
0020-7225,
29
, pp.
785
795
.
8.
Eringen
,
A. C.
, and
Ingram
,
J. D.
, 1965, “
A Continuum Theory of Chemically Reacting Media
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
197
212
.
9.
Wang
,
L. Q.
, 1994, “
Generalized Fourier Law
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2627
2634
.
10.
Cengel
,
Y. A.
, and
Boles
,
M. A.
, 2006,
Thermodynamics: An Engineering Approach
,
5th ed.
,
McGraw-Hill
,
Boston
.
11.
Wang
,
L. Q.
, 1995, “
Properties of Heat Flux Functions and a Linear Theory of Heat Flux
,”
Int. J. Mod. Phys. B
0217-9792,
9
, pp.
1113
1122
.
12.
Wang
,
L. Q.
, 2001, “
Further Contributions on the Generalized Fourier Law
,”
Int. J. Transp. Phenom.
1028-6578,
2
, pp.
299
305
.
13.
Wang
,
L. Q.
, 1996, “
A Decomposition Theorem of Motion
,”
Int. J. Eng. Sci.
0020-7225,
34
, pp.
417
423
.
14.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
15.
Wulff
,
W.
, 1974, “
The Energy Conservation Equation for Living Tissues
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-21
, pp.
494
495
.
16.
Klinger
,
H. G.
, 1974, “
Heat Transfer in Perfused Tissue I: General Theory
,”
Bull. Math. Biol.
0092-8240,
36
, pp.
403
415
.
17.
Chen
,
M. M.
, and
Holmes
,
K. R.
, 1980, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
137
150
.
18.
Cattaneo
,
C.
, 1958, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Compt. Rend.
0001-4036,
247
, pp.
431
433
.
19.
Vernotte
,
P.
, 1958, “
Les Paradoxes de la Théorie Continue de I’equation de la Chaleur
,”
Compt. Rend.
0001-4036,
246
, pp.
3154
3155
.
20.
Vernotte
,
P.
, 1961, “
Some Possible Complications in the Phenomena of Thermal Conduction
,”
Compt. Rend.
0001-4036,
252
, pp.
2190
2191
.
21.
Wang
,
L. Q.
,
Zhou
,
X. S.
, and
Wei
,
X. H.
, 2008,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer-Verlag
,
Heidelberg
.
22.
Tzou
,
D. Y.
, 1992, “
Thermal Shock Phenomena Under High-Rate Response in Solids
,”
Annu. Rev. Heat Transfer
1049-0787,
4
, pp.
111
185
.
23.
Chandrasekharaiah
,
D. S.
, 1986, “
Thermoelasticity With Second Sound: A Review
,”
Appl. Mech. Rev.
0003-6900,
39
, pp.
355
376
.
24.
Chandrasekharaiah
,
D. S.
, 1998, “
Hyperbolic Thermoelasticity: A Review of Recent Literature
,”
Appl. Mech. Rev.
0003-6900,
51
, pp.
705
729
.
25.
Tzou
,
D. Y.
, 1997,
Macro-to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
26.
Herwig
,
H.
, and
Beckert
,
K.
, 2000, “
Experimental Evidence About the Controversy Concerning Fourier or Non-Fourier Heat Conduction in Materials With a Nonhomogeneous Inner Structure
,”
Heat Mass Transfer
0947-7411,
36
, pp.
387
392
.
27.
Kaminski
,
W.
, 1990, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
555
560
.
28.
Mitra
,
K.
,
Kumar
,
S.
,
Vedavarz
,
A.
, and
Moallemi
,
M. K.
, 1995, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
568
573
.
29.
Graßmann
,
A.
, and
Peters
,
F.
, 1999, “
Experimental Investigation of Heat Conduction in Wet Sand
,”
Heat Mass Transfer
0947-7411,
35
, pp.
289
294
.
30.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
, 2003, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
541
552
.
31.
Vedavarz
,
A.
,
Mitra
,
K.
,
Kumar
,
S.
, and
Moallemi
,
M. K.
, 1992, “
Effect of Hyperbolic Heat Conduction on Temperature Distribution in Laser Irradiated Tissue With Blood Perfusion
,”
Adv. Bio. Heat Mass Transfer, ASME HTD
,
231
, pp.
7
16
.
32.
Luikov
,
A. V.
, 1966, “
Application of Irreversible Thermodynamics Methods to Investigation of Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
9
, pp.
139
152
.
33.
Tzou
,
D. Y.
, 1995, “
A Unified Field Approach for Heat Conduction From Micro- to Macro-Scales
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
8
16
.
34.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
41
73
.
35.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1990, “
Addendum to the Paper Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
62
, pp.
375
391
.
36.
Wang
,
L. Q.
, 2000, “
Solution Structure of Hyperbolic Heat-Conduction Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
365
373
.
37.
Liu
,
J.
,
Zhang
,
X. X.
,
Wang
,
C. C.
, and
Liu
,
W. Q.
, 1997, “
Engineering Investigation on Medical Application Approaches for the Thermal Wave Effects in Living Tissue
,”
Space Med. Med. Eng. (Beijing)
,
10
, pp.
135
139
.
38.
Liu
,
J.
,
Zhang
,
X. X.
, and
Liu
,
W. Q.
, 1999, “
The Thermal Pulse Decay Method for Invasive Measurement of Blood Perfusion of Tissue in Vivo
,”
Prog. Nat. Sci.
1002-0071,
9
, pp.
179
184
.
39.
Zhu
,
T. C.
, and
Feng
,
X. Z.
, 2001, “
Numerical Analysis of the Relationship Between Blood Flow Coefficient and Living Tissue Thermal Behavior
,”
Chin. J. Hemort.
,
11
, pp.
182
183
.
40.
Chato
,
J. C.
, and
Lee
,
R. C.
, 1998, “
The Future of Biothermal Emerging
,”
Ann. N.Y. Acad. Sci.
0077-8923,
858
, pp.
1
20
.
41.
Deng
,
Z. S.
, and
Liu
,
J.
, 2003, “
Non-Fourier Hear Conduction Effect on Prediction of Temperature Transients and Thermal Stress in Skin Cryopreservation
,”
J. Therm. Stresses
0149-5739,
26
, pp.
779
798
.
42.
Shih
,
T. C.
,
Kou
,
H. S.
,
Liauh
,
C. T.
, and
Lin
,
W. L.
, 2005, “
The Impact of Thermal Wave Characteristics on Thermal Dose Distribution During Thermal Therapy: A Numerical Study
,”
Med. Phys.
0094-2405,
32
, pp.
3029
3036
.
43.
Liu
,
J.
, 2000, “
Preliminary Survey on the Mechanisms of the Wave-Like Behaviors of Heat Transfer in Living Tissues
,”
Forsch. Ingenieurwes.
0015-7899,
66
, pp.
1
10
.
44.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L. X.
, 1999, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
, pp.
420
428
.
45.
Ma
,
N.
,
Jiang
,
S.
,
Li
,
H.
, and
Zhang
,
X.
, 2003, “
Analysis of Non-Fourier Effect and Laser-Induced Thermal Damage of Laser-Irradiated Layered Human Skin Tissue
,”
Space Med. Med. Eng. (Beijing)
,
16
, pp.
133
137
.
46.
Tung
,
M. M.
,
Trujillo
,
M.
,
Lopez-Molina
,
J. A.
,
Rivera
,
M. J.
, and
Berjano
,
E. J.
, 2009, “
Modeling the Heating of Biological Tissue Based on the Hyperbolic Heat Transfer Equation
,”
Math. Comput. Modell.
0895-7177,
50
, pp.
665
672
.
47.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2005, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5616
5624
.
48.
Cheng
,
L.
,
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2008, “
From Boltzmann Transport Equation to Single-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
6018
6023
.
49.
Cheng
,
L.
,
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2008, “
Single- and Dual-Phase-Lagging Heat Conduction Models in Moving Media
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
121302
.
50.
Guyer
,
R. A.
, and
Krumhansi
,
J. A.
, 1966, “
Solution of the Linearized Boltzmann Equation
,”
Phys. Rev.
0031-899X,
148
, pp.
766
778
.
51.
Anisimòv
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perelman
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys. JETP
0038-5646,
39
, pp.
375
377
.
52.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
M. V.
, 1957, “
Relaxation Between Electrons and Crystalline Lattices
,”
Sov. Phys. JETP
0038-5646,
4
, pp.
173
178
.
53.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
54.
Tzou
,
D. Y.
, and
Zhang
,
Y. S.
, 1995, “
An Analytical Study on the Fast-Transient Process in Small Scales
,”
Int. J. Eng. Sci.
0020-7225,
33
, pp.
1449
1463
.
55.
Vadasz
,
P.
, 2005, “
Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
307
314
.
56.
Vadasz
,
P.
, 2005, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction
,”
Transp. Porous Media
0169-3913,
59
, pp.
341
355
.
57.
Vadasz
,
P.
, 2005, “
Lack of Oscillations in Dual-Phase-Lagging Heat Conduction for a Porous Slab Subject to Imposed Heat Flux and Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2822
2828
.
58.
Vadasz
,
P.
, 2006, “
Exclusion of Oscillations in Heterogeneous and Bi-Composite Media Thermal Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4886
4892
.
59.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
465
477
.
60.
Wang
,
L. Q.
, and
Wei
,
X. H.
, 2008, “
Equivalence Between Dual-Phase-Lagging and Two-Phase-System Heat Conduction Processes
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1751
1756
.
61.
Wang
,
L. Q.
, and
Wei
,
X. H.
, 2009, “
Nanofluids: Synthesis, Heat Conduction and Extension
,”
ASME J. Heat Transfer
0022-1481,
131
, pp.
033102
.
62.
Wang
,
L. Q.
, and
Wei
,
X. H.
, 2009, “
Heat Conduction in Nanofluids
,”
Chaos, Solitons Fractals
0960-0779,
39
, pp.
2211
2215
.
63.
Wang
,
L. Q.
, and
Xu
,
M. T.
, 2002, “
Well-Posedness of Dual-Phase-Lagging Heat Conduction Equation: Higher Dimensions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1165
1171
.
64.
Dai
,
W. Z.
, and
Nassar
,
R.
, 2002, “
An Approximate Analytical Method for Solving 1D Dual-Phase-Lagging Heat Transfer Equations
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1585
1593
.
65.
Antaki
,
P. J.
, 1998, “
Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-Infinite Slab With Surface Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2253
2258
.
66.
Dai
,
W. Z.
, and
Nassar
,
R.
, 1999, “
A Finite Difference Scheme for Solving the Heat Transport Equation at the Microscale
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
15
, pp.
697
708
.
67.
Lin
,
C. K.
,
Hwang
,
C. C.
, and
Chang
,
Y. P.
, 1997, “
The Unsteady Solutions of a Unified Heat Conduction Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
1716
1719
.
68.
Tang
,
D. W.
, and
Araki
,
N.
, 1999, “
Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
855
860
.
69.
Tzou
,
D. Y.
, 1995, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
3231
3240
.
70.
Tzou
,
D. Y.
, and
Chiu
,
K. S.
, 2001, “
Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1725
1734
.
71.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Zhou
,
X. S.
, 2001, “
Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1659
1669
.
72.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1055
1061
.
73.
Mengi
,
Y.
, and
Turhan
,
D.
, 1978, “
The Influence of Retardation Time of the Heat Flux on Pulse Propagation
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
433
435
.
74.
Chester
,
M.
, 1966, “
High Frequency Thermometry
,”
Phys. Rev.
0031-899X,
145
, pp.
76
80
.
75.
Tzou
,
D. Y.
, “
Nonequilibrium Transport: The Lagging Behavior
,”
Adv. Transport Phenom.
, in press.
76.
Xu
,
F.
,
Seffen
,
K. A.
, and
Lu
,
T. J.
, 2008, “
Non-Fourier Analysis of Skin Biothermomechanics
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2237
2259
.
77.
Liu
,
K. C.
, and
Chen
,
H. T.
, 2009, “
Analysis for the Dual-Phase-Lag Bio-Heat Transfer During Magnetic Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
0017-9310,
52
,
1185
1192
.
78.
Zhou
,
J.
,
Chen
,
J. K.
, and
Zhang
,
Y. W.
, 2009, “
Dual-Phase Lag Effects on Thermal Damage to Biological Tissues Caused by Laser Irradiation
,”
Comput. Biol. Med.
0010-4825,
39
, pp.
286
293
.
79.
Zhou
,
J.
,
Zhang
,
Y. W.
, and
Chen
,
J. K.
, 2009, “
An Axisymmetric Dual-Phase-Lag Bioheat Model for Laser Heating of Living Tissues
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
1477
1485
.
80.
Goyeau
,
B.
,
Benihaddadene
,
T.
,
Gobin
,
D.
, and
Quintard
,
M.
, 1997, “
Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure
,”
Transp. Porous Media
0169-3913,
28
, pp.
19
50
.
81.
Haro
,
M. L.
,
Rio
,
J. A.
, and
Whitaker
,
S.
, 1996, “
Flow of Maxwell Fluids in Porous Media
,”
Transp. Porous Media
0169-3913,
25
, pp.
167
192
.
82.
Quintard
,
M.
, and
Whitaker
,
S.
, 1994, “
Transport in Ordered and Disordered Porous Media III: Closure and Comparison Between Theory and Experiment
,”
Transp. Porous Media
0169-3913,
15
, pp.
31
49
.
83.
Wang
,
L. Q.
, 1997, “
Frame-Indifferent and Positive-Definite Reynolds Stress-Strain Relation
,”
J. Fluid Mech.
0022-1120,
352
, pp.
341
358
.
84.
Whitaker
,
S.
, 1986, “
Flow in Porous Media I: A Theoretical Derivation of Darcy’s Law
,”
Transp. Porous Media
0169-3913,
1
, pp.
3
25
.
85.
Whitaker
,
S.
, 1996, “
The Forchheimer Equation: A Theoretical Development
,”
Transp. Porous Media
0169-3913,
25
, pp.
27
61
.
86.
Whitaker
,
S.
, 1999,
The Method of Volume Averaging
,
Kluwer Academic
,
Dordrecht
.
87.
Wang
,
L. Q.
, 2000, “
Flows through Porous Media: A Theoretical Development at Macroscale
,”
Transp. Porous Media
0169-3913,
39
, pp.
1
24
.
88.
Quintard
,
M.
, and
Whitaker
,
S.
, 1993, “
One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
0065-2717,
23
,
369
464
.
89.
Fan
,
J.
, and
Wang
,
L. Q.
, 2010, “
Is Classical Energy Equation Adequate for Convective Heat Transfer in Nanofluids?
,”
Advances in Mechanical Engineering
,
2010
,
719406
.
90.
Zhang
,
Y. W.
, 2009, “
Generalized Dual-Phase Lag Bioheat Equations Based on Nonequilibrium Heat Transfer in Living Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
4829
4834
.
You do not currently have access to this content.